WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 || 3 |

Проведён помол различных железных руд и добавок параллельно в дезинтеграторе и шаровой мельнице до одинаковой тонины удельной поверхности. После приготовления и затвердевания в одинаковых условиях у дезинтегрированных образцов, в зависимости от состава, зафиксирована в 3 раза большая прочность.

В 19691970 гг. произвели в полупромышленном дезинтеграторе подготовку стекольной смеси. Оказалось, это даёт возможность понизить температуру ванны и повысить качество стекла.

Проведённые в Днепропетровском металлургическом институте опыты показали, что предварительная обработка марганцевой руды в дезинтеграторе позволяют снизить температуру восстановления и быстрее выплавить металл, по сравнению с рудой, измельченной до той же тонины в шаровой мельнице.

Аналогичных результатов добились и с железной рудой. Кроме понижения температуры и ускорения производственного процесса, замечено, что при активировании руды в дезинтеграторе выход металла из руды стопроцентный и шлаки остаются чистыми. Производилась также активация в дезинтеграторе буровых жидкостей – суспензий, в результате чего повысилась скорость бурения и уменьшился износ бура. В текущем году тартуские биологи установили, что активация в дезинтеграторе корма бактерий повышает скорость их роста. При обработке в дезинтеграторе повышается также активность ферментов. Можно было бы привести ещё много аналогичных примеров, но ограниченное время настоящего доклада не позволяет сделать этого.

Упомянутое показывает, что надо решительно отказаться от всё ещё широко распространённого мнения, а именно – с точки зрения технологии не важен агрегат или метод, каким достигнута тонина помола – была бы лишь тонина.

Но так как при измельчении в вибро и шаровой мельнице говорят о механической активации, то мы назвали происходящее в дезинтеграторе активацией большой механической энергией. Возникающие при дезинтегрировании скорости удара по крайней мере в 10 раз больше, чем соответствующие величины при помоле в вибро и шаровой мельнице.

За последние годы установлено также различие физикохимических свойств веществ, измельченных до одинаковой тонины в дезинтеграторе и шаровой мельнице.

Некоторые примеры. Наблюдаются различия в кривых дифференциальных термограмм, термолюминесценции и экзоэлектронной эмиссии песка. В кривых парамагнитных резонансов различия тем большем, с чем большей скоростью удара измельчен песок в дезинтеграторе. При нагревании песка до 650°С пик кривой парамагнитного резонанса исчезает. Температура производства стекла и металла значительно ниже. Повидимому, изменения парамагнитного резонанса не выражают тех происходящих в дезинтеграторе изменений вещества, которые влияют на процесс плавления технологически в благоприятном направлении.

Как в Институте физики Академии наук ЭССР, так и в Днепропетровском металлургическом институте отмечено изменение валентности окиси железа, возникающее при дезинтеграторной обработке.

В Институте ядерной физики в Дубне зафиксировали под влиянием дезинтегрированного песка диффузионное рассеивание нейтронов.

В 1970 г. в Дебрецком университете установили, что дезинтегрированным кварцевым песком можно практически полностью отделить от радиоактивных сточных вод радиоактивный цезий.

В Тартуском университет удалось активацией веществ в дезинтеграторе провести свыше 30 реакций в твёрдой фазе, которые при современном уровне знаний не должны бы происходить. Выяснилось, что некоторые реакции происходят только в том случае, если скорости удара в дезинтеграторе выше определённой, минимальной для этой пары веществ, величины. Это наблюдение указывает на существование при механической активации определённого энергетического барьера и на необходимость его превышения для получения определённого результата. Аналогичного результат добились исследователи Японии, зафиксировав резкий рост прочности силикальцита, если при обработке смеси скорость удара превышала определённую величину.

Очевидно, что проведенные до сих пор научные исследования недостаточны для выяснения основных вопросов механической активации, в особенности же активации большой механической энергией. Технология опередила науку. Как и несколько столетий назад. Была шведская сталь, а со времени возникновения металлургии как науки не прошло ещё и столетия.



Как на основе экспонатов убедились участники симпозиума, сконструированный нами дезинтегратор является также интересным помольным агрегатом. В числе прочего, в нём можно молоть резину, пластмассы и другие вещества, которые в других мельницах измельчать трудно.

При одновременной активации нескольких веществ достигается высококачественная гомогенизация смеси. В дезинтеграторе возможно осуществление диспергации, активации и гомогенизации вместе с жидкостью. Обычно в практике это проводится при таком количестве жидкости, которое необходимо при следующем процессе изготовления изделий, т.е. формовке.

3. Более рациональное определение механической активации Диспергированные вещества никогда не являются конечным продуктом, они представляют собой лишь различные звенья технологического процесса. В самом деле. Измельченное зубами или разными мельницами сырьё становится ценностью только после процесса пищеварения и образования веществ, необходимых для питания клеток. Цемент в мешках не представляет никакой ценности, последней он становится только в строительных деталях.

Самостоятельной ценности не имеют также измельченная железная руда, удобрения и т.д. Поэтому неверно отделять диспергацию от технологии как единого целого, как это до сих пор делается. Слишком много доказательств того, что в разных помольных агрегатах образующаяся новая поверхность не является в технологическом отношении равноценной. Разница большая. Многократная. Возникает вопрос. Является ли рациональным нынешнее направление науки о диспергации? Есть ли смысл развивать и увеличивать шаровую мельницу и в конечном счёте получать 20% экономии при помоле, если получаемая новая поверхность в технологическом отношении в 3 раза менее ценна получаемой в дезинтеграторе поверхности? Не следует ли назвать механической активацией разницу технологической ценности измельченных в разных агрегатах веществ? Это можно измерить путём сравнения разных качественных показателей технологических конечных продуктов, измельченных до одинаковой удельной поверхности. Если это так, то логично выбрать базой наиболее распространённый агрегат – шаровую мельницу и полученные таким образом технологические результаты считать базовым уровнем. Деля на него качественный показатель конечного продукта, полученного в какомнибудь другом агрегате при неизменённой тонине, получили бы степень механической активации этого агрегата. Например. Урожайность удобренного измельченной в шаровой мельнице фосфоритной мукой ячменя 20 ц/га, при удобрении измельченной в дезинтеграторе до такой же удельной поверхности фосфоритной муки – 30 ц/га. В данном случае степень активации дезинтегратора при этом веществе, использованной тонине и урожайности ячменя была бы 30:20 = 1,5.

4. Универсальная гипотеза сущности механической активации Сейчас под механической активацией каждый исследователь понимает разное явление. Например, повышение каталитических свойств веществ при измельчении в вибромельнице – Р. Шредер; повышение скорости химических реакций – Г. Хейнеке; повышение прочности на сжатие искусственного известковопесчаного камня – И. Хинт и т.д.

Очевидно, исследованию проблемы активации и внесению ясности в неё во многом помогло бы наиболее общее, охватывающее все явления, понятие механической активации. Имеются убедительные факты, показывающие, что при механической обработке в веществах аккумулируется дополнительная энергия.

Мы активировали в дезинтеграторе кокс вместе с марганцевой рудой. В обычных лабораторных условиях примерно за полчаса в результате перемещения энергии в веществах кокс самовоспламеняется. Такое же явление возникает при активации одного кокса в дезинтеграторе.

Г. Пезер и А. Фийдлер описывают два примера аккумуляции энергии при обработке вещества на вальцах.

Йодид серебрартути даёт при 42°С жёлтую окраску. При превышении этой т.н. критической точки окраска становится красной. При пропускании вещества через вальцы при обычной температуре окраска становится красной и сохраняется такой при комнатной температуре. Только после нагревания его снова выше 42°С и охлаждения возвращается жёлтая окраска.

При многократном пропускании Fe2O3 через вальцы всё чаще и чаще возникают взрывы. Сила их бывала настолько велика, что вальцы разрушались. Опыт, имеющийся в области механической активации, показывает, что степень активации зависит от структуры активируемого вещества, а также величины и метода влияния механических сил, действующих на вещество. При периодических активирующих силах можно характеризовать их также амплитудой и частотой.





Семь лет назад опубликована на эстонском и позже на немецком языках следующая идея общей характеристики механической активации. Соответствующий конспект на русском языке роздан участникам симпозиума. А именно. При механической активации всегда какаято часть энергии переходит в вещество, как и в детали рабочего агрегата, и вещество аккумулирует энергию в таком виде, что измерения её термометром невозможно. Другими словами, невозможен переход некомпенсированной работы в тепло. Мы предлагали и предлагаем именно такую компенсацию назвать механической активацией. Это было бы нашим вторым предложением настоящему симпозиуму.

Чем больше при механическом воздействии на вещество эта часть энергии, тем больше коэффициент полезного действия механической активации. По содержанию здесь уже давно нет ничего нового. Специалисты диспергации очень мало задумывались над тем, соответствует ли затраченная на диспергацию энергия, затраченной на повышение температуры деталей установки и диспергируемого вещества. Само собой разумеется, что часть энергии расходуется на активацию новых поверхностей.

Такое рассмотрение вопроса даёт возможность полностью охватить всю механическую сторону механической активации. Так же, как описано в вышеуказанной публикации, разрешает такой подход математически связывать коэффициент полезного действия механической активации с техникокинетическими показателями установки и, в связи с этим, даёт конструкторам основное направление в создании аппаратуры механической активации с большим коэффициентом полезного действия.

Пару лет назад нами сконструирована лабораторная установка для измерения количества энергии, аккумулируемой в веществе и установке в ходе механической активации, которую невозможно зафиксировать термометром. Опыты с этой аппаратурой показывают, что количественно эту энергию можно определить. Участникам симпозиума предоставлена возможность ознакомления и с этой установкой.

5. Энергоинфузиология Из приведённого выше можно сделать некоторые достоверные выводы.

Вопервых. Всестороннее изучение проблемы механической активации и создание более рациональных установок механической активации могут иметь поворотное значение в развитии всей технологии. Это позволит проще и дешевле производить многие ценности с более высоким качеством и со значительно меньшей затратой энергии. Это позволит также проводить новые синтезы между веществами и, в связи с этим, создавать человечеству новые, до сих пор неизвестные ценности.

Вовторых. В изучении механической активации отсутствует рациональная система. Полученные исследователями результаты трудно или почти вообще несравнимые. Отрасли науки, занимающиеся этим вопросом – механохимия, трибохимия, механическая активация, диспергация и т.д. не охватывают сущности проблемы.

Втретьих. Учитывая глубину, сложность и практическое значение проблемы нужно всё это объединить в новой отрасли науки, рекомендуемой нами под названием энергоинфузиология. Это наше третье предложение настоящему симпозиуму.

Энергоинфузиология, как отрасль науки, должна заниматься тремя основными проблемами:

1. Необходимо всесторонне выяснить возможность повышения активации веществ с помощью механических и параллельно с ними применяемых энергетических полей, а также изучать проблему коэффициента полезного действия механической активации и создавать предпосылки к созданию установки с большим коэффициентом полезного действия.

2. Необходимо выяснить проблему устойчивости механической активации. В веществах, где оно быстро исчезает, стараться довести эту устойчивость до уровня, при котором влияние активации можно рационально использовать в технологических процессах.

3. Необходимо всесторонне изучить связь между полученной механической активацией и физикохимическими и технологическими процессами, создать предпосылки к радикальной рационализации технологических процессов.

09.04.2005 переведено в электронный вид Яцковым А. А. 25626 знаков с пробелами.

Pages:     | 1 || 3 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.