WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 || 3 | 4 |   ...   | 5 |

Аналогичные исследования, выполненные позже кафедрой экспериментальной физики Тартуского государственного университета, показали, что прочность известковопесчаных изделий из дезинтегрированного песка в 2,5 раза превышает прочность изделий из песков, измельченных традиционным способом. Этот результат, зафиксированный более двадцати пяти лет назад, открыл новую страницу в диспергировании и технологии в целом. Он стоит у истоков УДАтехнологии и новой отрасли науки – энергоинфузиологии.

Сначала считали, что различная прочность объясняется различным гранулометрическим составом песков, измельченных в разных агрегатах до одинаковой удельной поверхности.

Из измельченных в разных агрегатах песков составили искусственные пески с одинаковой гранулометрией, а различие в прочности попрежнему наблюдалось.

Ход дальнейших исследований проблемы описан на нескольких сотнях страниц монографии / 2 /, рассматривающей вопросы изготовления силикальцитных изделий.

Различную прочность пытались объяснить разной формой частиц песка, разной их структурной прочностью и разной растворимостью как в воде, так и в различных средах и т.д.

В конце концов вынуждены были констатировать: при различных методах измельчения песков должны возникать ещё такие изменения, которые указанные методы исследований не в состоянии зафиксировать.

Все эти различия в свойствах веществ, имеющие место в измельченных в дезинтеграторе песках, по сравнению с песками, измельченными в шаровых мельницах, и выражающиеся разной прочностью на сжатие приготовленных в одинаковых условиях известковопесчаных монолитов, стали называть активностью дезинтегрированных песков.

Проведённые в 1970 году исследования показали, что даже дезинтеграторы разной конструкции дают неодинаковую активность песка, проявляющуюся в различной прочности на сжатие известковопесчаных изделий. Разница в прочности достигала 50% и выше. В настоящее время на основе практического опыта выдвинута рабочая гипотеза, связывающая основные принципы конструкции дезинтегратора с возникающей в веществе активацией, а именно: чем больше число ударов, получаемых частицами вещества, чем больше скорость ударов, и чем меньше интервал между следующими друг за другом ударами, тем большая возникает активность.

Сейчас считается важным и то, чтобы скорость следующих друг за другом ударов постоянно возрастала. Выполнение последнего требования обеспечивается самой конструкцией дезинтегратора.

В последние годы проведён ряд опытов по одновременному воздействию на вещества, наряду с механическими силами, также электрическими и электромагнитными полями. Из опытов следует, что другие энергетические поля влияют на возникающую при дезинтегрировании активацию. Как показали эксперименты, активное состояние, достигаемое в дезинтеграторе при помоле песка, довольно устойчивое. За месяц хранения на воздухе снижение активности не наблюдается, за два месяца активность понижается примерно на 10% и исчезает полностью за шесть месяцев. Активированная в дезинтеграторе вода сохраняет свою активность около 15 дней, а активное состояние ряда полимеров – полиэтилена, полистирола, полиоксиэтилена – через 10 месяцев хранения на воздухе снижается на 1012%.

3. Рациональное определение механической активности Диспергированные вещества никогда не являются конечным продуктом, они представляют собой лишь различные звенья технологического процесса. В самом деле, измельченные зубами или разными мельницами продукты питания становятся ценностью только после процесса пищеварения и образования соединений, необходимых для питания клеток. Цемент в мешках не представляет никакой ценности, приобретая её только в строительных деталях.

Самостоятельной ценности не имеют также измельченная железная руда, удобрения и т.д. Поэтому неверно отделение диспергирования от технологии в целом, как это часто делается. Слишком много доказательств того, что в разных помольных агрегатах образующаяся новая поверхность не является в технологическом отношении равноценной. Разница большая, многократная.

Возникает вопрос, является ли рациональным нынешнее направление науки о диспергировании. Какой смысл развивать и увеличивать шаровую мельницу и в конечном счёте получать 20% экономии при помоле, если получаемая на ней новая поверхность в технологическом отношении имеет в 3 раза меньшую ценность, чем получаемая в УДАустановке! Не следует ли назвать механической активацией разницу технологической ценности измельченных в разных агрегатах веществ, которую можно оценить путём сравнения разных качественных показателей изделий, полученных из материалов, измельченных до одинаковой удельной поверхности в различных агрегатах? Если это так, то логично выбрать базой наиболее распространённый агрегат – шаровую мельницу и полученное таким образом качество продукта считать базовым уровнем. Деля на него качественный показатель изделий, полученных при измельчении исходных компонентов до одинаковой удельной поверхности в какомлибо другом агрегате, можно получить степень механической активации, обеспечиваемую данным агрегатом. Например, если урожайность удобренного измельченной в шаровой мельнице фосфоритной мукой ячменя составляет 20 ц/га, а при удобрении ячменя той же мукой, измельченной в УДАустановке – 30 ц/га, то степень активации этого вещества, получаемая в УДАустановке равна 30:20, т.е. 1,5. Это было одним из наших предложений на 5м симпозиуме по механоэмиссии и механохимии твёрдых тел / 3 /. Это, на наш взгляд, позволило бы внести ясность в вопрос механической активации материалов. Целесообразно было бы также учесть и сравнить при этом энергетические и эксплуатационные затраты на обработку, что позволило бы получить второй коэффициент – экономичность процесса. Анализ обоих показателей и позволит достаточно точно оценить преимущества и недостатки методов измельчения и активации.

4. УДАтехнология За последние 15 лет нами в очень многих отраслях технологии зафиксировано, что при обработке сырьевых материалов в дезинтеграторе не только изменяются (часто значительно) их физикохимические и технологические свойства, но и появляется возможность значительно повысить рациональность всей современной технологии. Сконструированные нами универсальные дезинтеграторы не только осуществляют механическую активацию веществ. При обработке поликристаллического сырья оно под действием мощных ударов разрушается по поверхностям спайности кристаллов, вследствие чего минералы или другие материалы, содержащие фазы различной прочности, измельчаются под действием ударов в различной степени, в том числе и по границе разделов фаз. Поэтому процессы сепарирования фаз из обработанных в дезинтеграторе многофазных веществ при помощи магнитных полей, флотации, сит или другими методами значительно упрощаются, а выход целевого продукта существенно увеличивается.

При одновременной обработке несколькими сырьевыми компонентами в сконструированном нами дезинтеграторе независимо от количественного их соотношения, различий в удельном весе и влажности, образуется гомогенная смесь. Высокая гомогенность достигается также при одновременной обработке жидкого и твёрдого сырья.

Учитывая всё это, мы сочли целесообразным назвать новый технологический комплекс УДАтехнологией. У – универсальный, Д – дезинтегратор, А – активатор. Универсальность новой технологии бесспорна. Слово “дезинтегратор” мы считаем целесообразным сохранить в названии новой технологии, несмотря на то, что конструкция выпускаемых в настоящее время СКТБ “Дезинтегратор” установок имеет лишь отдалённое сходство с изобретённым в 1859 г. инженером Карром дезинтегратором. Активация, как мы уже могли убедиться выше, является главным звеном в новой технологии.

Возникновение активации в веществе при дезинтегрировании зафиксировано не только у песков. Вот некоторые примеры:

обработанную в УДАустановке фосфоритную муку растения усваивают значительно лучше, чем муку, измельченную до максимально возможной тонины в шаровой мельнице, и эффективность фосфоритной муки, как удобрения, возрастает на десятки процентов. Исследования методом меченых атомов показали, что усвоение фосфора растениями повысились в несколько раз;

при помоле одного и того же клинкера в шаровой мельнице и в УДАустановке до одинаковой тонины в последнем случае получают более качественный портландцемент, прочность изделий из которого через 16 дней почти равна той, что лишь на 28 день достигается цементом, измельченным в шаровой мельнице. Конечная же прочность дезинтегрированных цементов в зависимости от состава клинкера до 40% выше;





УДАтехнология приготовления специальных тампонажных смесей для закрепления стенок глубоких буровых скважин при добыче нефти и газа позволяет повысить прочность цемента на растяжение до 5 раз по сравнению с ранее применяющимися смесями и уменьшить стоимость каждой скважины не менее чем на 100 тыс. рублей;

активация в УДАустановке буровых растворов позволяет на 2025% повысить скорость бурения, сократить содержание твёрдой фазы в них в 2,02,5 раза, уменьшить износ бура;

УДАтехнология производства силикальцита (который на Западе известен под названием “лапрекс”) позволяет изготовлять более качественный, чем до сих пор, индустриальный искусственный камень примерно в 2 раза дешевле, причём расход энергии снижается примерно на 50%. Стойкость силикальцита к различным корродирующим воздействиям в несколько раз выше, чем у полученного с помощью шаровой мельницы силикальцита;

подготовка в УДАустановке стекольной смеси и шихты для производства огнеупоров даёт возможность более чем на 20°С понизить температуру плавления или обжига, повысить скорость процесса в два раза и улучшить качество изделий;

проведённые в Днепропетровском металлургическом институте опыты показали, что предварительная обработка железной руды в УДАустановке позволяет более чем на 100°С снизить температуру восстановления металла и снизить время процесса более чем на 20% по сравнению с рудой, измельченной до той же тонины в шаровой мельнице;

обработка в УДАустановке вольфрамовых концентратов (шеелита, вольфрамита) позволяет на 10% увеличить степень извлечения металла и на 1520% увеличить скорость последующей гидротермической обработки;

обработка в УДАустановке медных и железорудных концентратов совместно с вяжущим (CaO) позволяет на 2535% увеличить прочность окатышей;

обработка в УДАустановке SiO2 в несколько раз увеличивает его адсорбционную способность, используемую для извлечения из сточных вод радиоактивного цезия;

обработка в УДАустановке крахмалосодержащего сырья для спиртового производства на 20% увеличивает скорость сбраживания и повышает выход спирта;

обработка в УДАустановке водонефтяных смесей позволяет на 57% повысить их калорийность, подготовка водотопливных эмульсий и суспензий в УДАустановке позволяет увеличить кпд двигателя, улучшить условия его работы и обеспечивает более полное сгорание топлива;

активация в УДАустановке питательной среды для выращивания микроорганизмов на 1525% повышает скорость их роста;

УДАтехнология производства карбонатных удобрений позволяет повысить урожайность растений на 35% за счёт лучшей усвояемости удобрений, снизить себестоимость 1 т удобрений на 3 рубля, в том числе сэкономить до 10 кг топлива;

УДАтехнология активации воды увеличивает рост растений на 3040%, животных в среднем на 20%, рыб – на 45100%, повышает стойкость растений к экстремальным условиям: низким температурам, недостатку влаги в среднем на 20%. При этом ежедневная добавка активированной в УДАустановке воды в количестве всего лишь 10 мл на 1 кг веса некоторых животных ведёт к дополнительному привесу их на 20% при одинаковом с контролем рационе;

УДАтехнология переработки отходов резины, стеклопластиков, стекловолокна позволяет получить ценный порошковый продукт, используемый в качестве наполнителей для полимеров. При этом для двух последних видов отходов в мировой практике не существует промышленной технологии переработки;

при приготовлении комбикорма в УДАустановке взамен молотковой дробилки КДМ0,2 достигается улучшение качества продуктов, экономия энергии и снижение эксплуатационных расходов на десятки процентов;

УДАтехнология приготовления протеинового концентрата позволяет примерно до 2 раз увеличить выход клеточного сока.

Можно было бы привести ещё много аналогичных примеров. Но и уже сказанное полностью опровергает всё ещё широко распространённое мнение о том, что с точки зрения технологии не важен агрегат или метод, с помощью которого достигнута требуемая тонина.

Pages:     | 1 || 3 | 4 |   ...   | 5 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.