WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 2 | 3 || 5 |

Если это так, то принципиально невозможно построить машину или установку, в которой работа полностью превращается в тепло, аналогично тому, как не представляется возможным создать двигатели, в которых тепло полностью превращалось бы в работу. Противоречие этого принципа с положениями классической физики, однако, отпадает, если рассматривать опыты, проведённые для определения механического эквивалента теплоты, лишь как относительно точные, и считать, что его значения вычислены с определённой погрешностью.

Возможно, что огромные перегрузки, (достигающие в отдельных случаях четырехсот миллионов ускорений свободного падения), которые испытывают частицы обрабатываемого материала при соударениях с пальцами роторов УДАустановки, играют какуюто неизвестную пока науке роль.

Специалисты по тонкому измельчению вряд ли задумывались над тем, отвечает ли в точности прирост тепловой энергии диспергируемого материала и помольного агрегата количеству израсходованной в процессе диспергирования механической энергии.

Принимается за постулат, что часть энергии при активации материала аккумулируется на вновь образованных поверхностях.

2. Приведённое в п. 1, в некотором смысле, является поворотным принципом по отношению ко второму началу термодинамики. Согласно нашему предположению, при превращении работы в тепло, имеет место круговой процесс, противоположный циклу Карно.

Как известно, при превращении тепла в работу коэффициент полезного действия не зависит от физической и химической природы рабочего тела. В противном случае, при превращении работы в тепловую энергию физическая и химическая структура материалов должна оказать существенное влияние на коэффициент полезного действия. Абсолютная температура T подлежащего обработке материала оказывает большое влияние на коэффициент полезного действия теплового двигателя.

В соответствии с этим, при обратном цикле возможен тем больший коэффициент полезного действия (?), чем меньше отличается сумма кинетических энергий движущихся частей установки и частиц обрабатываемого материала от кинетической энергии обрабатываемого вещества.

Коэффициент полезного действия цикла Карно тем больше, чем больше разница T1 – T2. Из этого можно заключить, что коэффициент полезного действия обратного процесса следует выразить следующей формулой:

(1),, где: E – сумма кинетических энергий движущихся частей установки, в которой происходит превращение работы в тепловую энергию, и обрабатываемого вещества;

E0 – кинетическая энергия обрабатываемого вещества;

K – коэффициент, зависящий от физикохимических свойств активируемого вещества и материала установки механической активации.

Из экспериментальной физики известно, что при превращении механической работы в тепло может быть достигнут высокий коэффициент полезного действия, при условии, что материал, воспринимающий механическую энергию, находится в газообразном или жидком состоянии. Однако при использовании твёрдых тел коэффициент полезного действия в значительной степени понижается. Большая точность была достигнута в опытах по определению числового значения механического эквивалента теплоты при использовании газообразных и жидких материалов, у которых путём самодиффузии быстро достигается термодинамическое равновесие.

Ввиду этого числовое значение компенсации или механической активации не превышало погрешностей опыта.

Из формулы (1) следует, что определение числовых значений механического эквивалента теплоты должно быть проведено в устройстве, в котором кинетическая энергия частей, отдающих энергию, лишь незначительно отличается от кинетической энергии принимающего энергию материала, и значение коэффициента велико. Как известно, это условие выполнялось при проведении опытов по определению механического эквивалента теплоты.

3. Интересующий нас коэффициент полезного действия механической активации, имеющей место компенсации при механической обработке, выражается следующим образом:

(2), или (3).

В 10м номере журнала “Хоризонт” за 1967 г. механическая активация описана более подробно, исходя из термодинамической точки зрения. Ниже рассмотрены некоторые вопросы, более подробно описанные в указанной статье.

В целях обеспечения равновесия физических процессов, система, как известно, не должна подвергаться влиянию скачкообразно изменяющихся воздействий, процесс должен протекать достаточно медленно. Для оптимального протекания процесса механической активации, не являющегося равновесным процессом, система должна подвергаться резким скачкообразным изменениям нагрузки. Сам процесс должен протекать быстро, при этом каждая последующая ступень его должна быть интенсивнее предыдущей.



Из формулы (3) следует, что для повышения коэффициента полезного действия, активирующей установке требуется наличие большой кинетической энергии.

Совершенно очевидно, что наибольшая кинетическая энергия достигается путём встречных ударов при больших скоростях.

Для повышения эффекта необходимы многочисленные, быстро следующие один за другим встречные удары при возрастающих относительных скоростях.

Для того, чтобы в ходе этого процесса избежать дезактивации, рекомендуется интервал времени между двумя следующими друг за другом ударами довести до минимума.

Учитывая вышеизложенное, необходимо отметить, что кроме механических установок, основанных на ударном принципе, с точки зрения активации, многообещающими являются также вальцы и бегуны, в которых, попавшие между двумя роликами или одним валком и плоской плитой, частицы материала подвергаются быстрому механическому воздействию с возрастающей интенсивностью.

В зависимости от диаметра вальцов и числа их оборотов возможно регулирование продолжительности отдельной стадии и всего процесса.

С точки зрения механохимии было бы целесообразно уже в процессе активации проводить некоторые механохимические реакции между двумя или несколькими веществами. В некоторых случаях, при совместной обработке взаимно реагирующих компонентов механическая энергия, возможно, используется не только для механической активации компонентов реакции, но частично затрачивается и непосредственно на химические процессы.

Рис. 1. Схематическое изображение и принцип работы УДАустановки Принимая во внимание вышеприведённые принципы и результаты многочисленных экспериментов, проведённых в СССР и ряде других стран, по нашему мнению, можно установить более точные соотношения и формулы расчётов процесса механической активации и механохимических процессов, что, к сожалению, ещё никем не сделано.

Путём обработки в УДАустановке, которая уже в течение 30 лет является объектом исследований, могут быть достигнуты во много раз большие импульсные мощности и частоты, чем это имеет место при обработке материала в шаровой или вибромельнице.

На пути от центра роторов УДАустановки к их периферии частицы обрабатываемого материала в течение тысячных долей секунды многократно подвергаются ускорению и торможению (рис. 1).

При быстро чередующихся встречных ударах подлежащие активации частицы материала получают большее количество энергии, чем при более длительной, продолжающейся многие часы, обработке в шаровой или вибромельнице.

Для уменьшения возможности проскока частиц материала между рядами пальцев, конструкция роторов должна быть рассчитана для каждого материала по формуле (4) / 5 /.

(4) (P1P2)m – максимальное расстояние между центрами двух соседних пальцев круга пальцев m Rm – радиус круга пальцев m Rm1 – радиус круга пальцев m – r – радиус пальца nm – число оборотов круга пальцев m nm1 – число оборотов круга пальцев m – б – средний диаметр частиц обрабатываемого материала 7. Энергоинфузиология В докладе на 5м симпозиуме по механохимии и механоэмиссии, проходившем в Таллине в 1975 г., было предложено зафиксировать следующую точку зрения на механическую активацию.

Вопервых, необходимо продолжить всестороннее изучение проблемы механической активации и создание более рациональных установок механической активации, которые имеют поворотное значение в развитии всей технологии. Это позволяет проще и дешевле производить многие ценности с более высоким качеством и со значительно меньшей затратой энергии. Это позволяет также проводить новые синтезы веществ и, в связи с этим, создавать для человечества новые, до сих пор неизвестные ценности.

Вовторых, в изучении механической активации ещё отсутствует рациональная система. Полученные различными исследователями результаты трудно или почти невозможно сравнивать. Отрасли науки, занимающиеся этим вопросом – механохимия, трибохимия, сегодняшняя механическая активация, измельчение и т.д., не охватывают всей сущности проблемы.





Втретьих, учитывая глубину, сложность и практическое значение проблемы, предложено все эти направления объединить в новой отрасли науки, назвав её, к примеру, “энергоинфузиология”.

Энергоинфузиология должна заниматься тремя основными проблемами.

1. Всесторонне выяснять возможности повышения активации веществ с помощью механических и применяемых параллельно с ними энергетических полей, а также изучить проблему коэффициента полезного действия механической активации и создать предпосылки к разработке установок с более высоким коэффициентом полезного действия.

2. Выяснить проблему устойчивости механической активации. В веществах, где она быстро исчезает, стараться довести устойчивость до уровня, при котором влияние активации можно рационально использовать в технологических процессах.

3. Всесторонне изучать связь между активацией и физикохимическими и технологическими процессами, создавать предпосылки к радикальной рационализации технологических процессов.

В нынешнем, 1981 году, эти положения не потеряли своей актуальности.

8. Перспективы УДАтехнологии В настоящее время в четырёх областях промышленности имеется 525 летний опыт эксплуатации УДАустановок: производство лапрекса (силикальцита), известняковой сельскохозяйственной муки, приготовление и активация тампонажных цементов, приготовления комбикорма. В II областях УДАтехнологии внедрены на отдельных предприятиях или проходят промышленные испытания: измельчение и активация металлических порошков, активация воды, приготовление протеинового концентрата, корма для животных на базе экскрементов и корма для пушных зверей, измельчение полиоксиэтилена, переработка отходов резин, приготовление биопрепаратов АУ8 и И1, интенсификация синтеза карбида кремния, активация вольфрамовых руд, активация лежалых цементов. Широкое применение УДАтехнологии в этих областях может быть осуществлено в течение ближайших 23 лет.

Проходят исследования ещё примерно по 45 направлениям: активация крахмалосодержащего сырья для бродильных производств, катализаторов, ферромагнетиков, смесей для производства аккумуляторов, шихт для производства стекла и огнеупоров и т.д.

Здесь следует подчеркнуть выявленные к настоящему времени преимущества УДАтехнологии перед существующей технологией, базирующейся на трёх вышеназванных компонентах.

В УДАустановке можно активировать и диспергировать различные отходы (бумаги, стекловолокна, резин, полимеров и т.д.), вновь превращая их в ценное технологическое сырьё, что позволит человечеству перейти не только к безотходному производству, но и к безотходному потреблению. УДАтехнология позволяет придавать различным жидкостям новые технологические свойства (выше это было показано на примере активации топлива, водотопливных смесей и воды). Несомненно эта закономерность распространяется на большинство или даже на все жидкости. Можно предположить, что и газы, обработанные в УДАустановке, получат новые свойства. Так уже было показано, что обработка в УДАустановке дымовых газов, содержащих сернистые соединения, позволяет нейтрализовать их, связать вредные примеси и получить ценные продукты (серную и сернистую кислоты).

Сейчас невозможно в полной мере представить себе все перспективы, которые открывает УДАтехнология перед мировой экономикой. Она даёт возможность многим областям технологии выйти на более высокий качественный уровень. Например, в производстве лапрекса (силикальцита) она даёт возможность конструировать заводыавтоматы, которые производят детали в необходимой для монтажа различных зданий очерёдности. По заданной программе дозируются все исходные компоненты: песок, известь, вода и алюминиевый порошок. Приготовленная в УДАустановке смесь заданного состава непрерывно поступает в формы.

Формы на конвейерную линию подаются в том порядке, в каком соответствующие детали должны поступать на монтаж. Другими словами, продукцией такого завода станут дома, причём лишь последняя операция – монтаж, будет осуществляться на строительной площадке. Другие существующие технологии не позволяют этого добиться.

Pages:     | 1 |   ...   | 2 | 3 || 5 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.