WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 130 | 131 || 133 | 134 |   ...   | 140 |

В литературе, посвященной реологии крови, принято подробно рассматривать вопрос о влиянии различных факторов на ее текучесть в широком диапазоне их варьирования. Так, например, исследуется влияние на вязкость суспензий эритроцитов их концентраций в диа­пазоне от 0,05 до 0,9.

Мы следуем подобной традиции с тем лишь, чтобы кратко очертить общие контуры во­проса о природе реологических особенностей крови. В дальнейшем рассмотрению будут под­вергаться только те особенности и взаимоотношения, которые имеют место в образцах крови, способной в той или иной мере выполнять присущие ей функции в условиях целост­ного организма. В противном случае гемореология и реологический анализ не будут иметь клинических приложений.

Считается, что цельная кровь обладает по меньшей мере двумя основными реологичес­кими свойствами — вязкостью и пластичностью и, следовательно, может быть отнесена к классу неньютоновских жидкостей. Плазма же и сыворотка чаще расцениваются как ньюто­новские жидкости с вязкостью соответственно 1,5Ь0~3 и 1,310~3 Па/с. Анализ литературы показывает, что некоторым исследователям удается зарегистрировать вязкоупругость крови [Ghien S., 1975; Thurson G.,1976] и слабовыраженную тиксотропность [Регирер С.А., 1982].

Реологические свойства крови зависят от многих факторов. Их условно можно разде­лить на несколько групп: 1) гемодинамические факторы, обусловленные изменением свойств крови при ее движении; 2) клеточные факторы, связанные с изменением характе­ристик форменных элементов (главным образом эритроцитов) и их концентрации; 3) плаз­менные факторы; 4) факторы взаимодействия, под которыми чаще всего понимают различ­ные проявления феномена внутрисосудистой агрегации форменных элементов крови; 5) факторы внешних условий. Это деление весьма условно и подразумевает взаимосвязь и взаимодействие факторов различных групп. Например, большинство факторов первых трех групп связаны с возникновением и развитием феномена внутрисосудистой агрегации фор­менных элементов крови, и в то же время этот феномен не является неизбежным спутником прецедентов повышенной вязкости.

Положение о том, что вязкость крови зависит от скорости деформации, является важ­нейшим. Рассмотрим основные особенности кривой вязкости крови и влияние на нее ука­занных групп факторов.

Многочисленными исследователями установлено, что вязкость крови постепенно убы­вает по мере увеличения градиента скорости. Эта зависимость проявляется при относитель­но низких градиентах скорости — до 60—70 с"1 [Селезнев С.А. и др., 1976]. При градиентах скорости 60—70 с""' и выше убывание вязкости практически прекращается, и она становится «постоянной» или, как ее часто называют, асимптотической. Характерная для крови кривая вязкости вогнута в сторону оси скорости деформации. Следовательно, судя по кривой тече­ния, крови присуща псевдопластичность. Учитывая, что кровь имеет предел текучести, она (пользуясь принятой в реологии терминологией) может быть отнесена к нелинейновязкопластичным средам.

Рассмотрим влияние различных групп факторов на текучесть крови.

Факторы внешних условий. Основным фактором внешних условий является температу­ра. При увеличении температуры вязкость крови и плазмы уменьшается, и наоборот [Shyder G., 1971). Существует точка зрения, что температурная зависимость вязкости крови обусловлена главным образом свойствами плазмы [Левтов В. А. и др., 1982]. Между тем от­носительная вязкость плазмы, как показано S. Charm, G. Kurland (1974), рассчитанная из соотношения г)плазмь,/т|Воды, увеличивается лишь на 0,3 при соответствующем перепаде тем­пературы от 0 до 30° С.

Факторы взаимодействия. Выделение этой группы факторов обусловлено весомым вкла­дом феномена внутрисосудистой агрегации форменных элементов крови и явления ориента­ции в характер кривой течения. Образование агрегатов при низких скоростях деформации, их распад при увеличении градиента скорости, когда силы потока, стремящиеся разъединить эритроциты, начинают преобладать над силами межэритроцитарного взаимодействия, суще­ственно влияют на течение крови.

Определенный вклад в текучесть крови вносит и ориентация отдельных форменных эле­ментов, т.е. их пространственное положение в потоке крови. Так, в эксперименте путем микрофотографирования изучено движение частиц, имеющих форму цилиндров и двояко­вогнутых дисков (близких по форме к недеформированным эритроцитам), плосковогнутых дисков, а также дисков со сферической поверхностью и двояковыпуклых дисков [Surera S., Hochmuth R., 1968]. Установлено, что «устойчивые» положения частиц возможны лишь тогда, когда их ось симметрии совпадает с направлением потока (нормальная ориентация) или перпендикулярна ему (краевая ориентация). Безусловно, экстраполяция этих данных, а также результатов работ других исследователей [Чижевский А.Л., 1953, 1980], показавших наличие эффекта ориентации эритроцитов, на живой организм весьма затруднительна. В на­стоящее время, повидимому, можно ограничиться лишь констатацией этого явления.



Плазменные факторы. Состав белков плазмы влияет на текучесть крови.

Исследование влияния белкового состава плазмы на вязкость крови и суспензии эритроцитов в плазме по­казало, что наибольшее влияние на текучесть крови оказывают глобулины (особенно гmoбулины) и фибриноген [Pennel R. et al., 1965; Mayer G. et al., 1966]. Влияние на вязкость крови увеличения содержания грубодисперсных белковых фракций подтверждено многими исследователями [Merni Е., Well R., 1961; Dormandy J., 1970]. По мнению некоторых из них, более важным фактором, ведущим к изменению вязкости, является не абсолютное количест­во белков, а их соотношения: альбумин/глобулины, альбумин/фибриноген [Dormandy J., 1970; Dintenfass L., 1974].

Особое внимание уделяется влиянию на вязкость фибриногена. Оно тесно связано с фе­номеном внутрисосудистой агрегации форменных элементов крови. Показано, что возраста­ние концентрации фибриногена ведет к активации агрегации эритроцитов, а это в свою оче­редь увеличивает вязкость крови [Wells R. et al., 1962; Chien S. et al., 1966; Weaver J. et al., 1969]. Это подтверждено опытами с добавлением дозированных количеств фибриногена к суспензии эритроцитов.

Установлено, что размеры агрегатов и вязкость увеличиваются про­порционально концентрации фибриногена. Данный эффект наиболее выражен при низких градиентах скорости [Chien S. et al., 1966].

Изменение концентрации свободных жирных кислот, триглицеридов, холестерина и не­которых других компонентов плазмы может также влиять на величину вязкости крови, что обусловлено их способностью изменять механические свойства эритроцитов, ламинарный характер кровотока на турбулентный и наоборот, а также некоторыми другими механизмами [Mayer G. et al., 1966; Dormandy J., 1970; Dintenfass L, 1974].

К числу плазменных факторов могут быть также отнесены изменения рН крови и ее водноэлектролитного состава.

Влияние рН крови на ее текучесть показано многими исследователями [Dintenfass L., 1962, 1965; Barch G., Pasgualle N., 1965]. Независимо от направления изменения рН отмеча­ется возрастание вязкости крови. Уменьшение рН на 0, вызывает при гематокритном числе 0,7—0,8 рост вязкости до 250 %.

Вязкость цельной крови, измеренная R. Wells (1963), Н. Сох, Su GougJen (1963) при помощи вискозиметра типа «конусплоскость», увеличивалась с нарастанием рН, однако при исследовании суспензии эритроцитов в изотоническом растворе натрия хлорида ана­логичных изменений авторы не выявили. Это позволило предположить, что механизм из­менения вязкости при увеличении рН обусловлен нарушением мобильных комплексов «белки плазмы — эритроциты». Между тем в этой работе не представлено данных о разме­рах клеток, что могло бы уточнить механизм реологических нарушений. Принято считать, что увеличение вязкости крови при ацидозе или алкалозе обусловлено изменением формы и объема эритроцитов (сморщиванием или разбуханием). Так, при респираторном и мета­болическом ацидозе ускоряется гидратация молекул ССЬ внутри эритроцитов, что приво­дит к увеличению содержания внутриклеточного бикарбоната, и вода плазмы проникает в эритроциты в результате возросшего осмотического градиента. В условиях эксперимента такое перераспределение воды может быть настолько значительным, что изменяется даже вязкость плазмы. Интересно отметить, что, несмотря на быстрый рост вязкости плазмы, а также резкое увеличение размеров эритроцитов и их ригидности, вязкость крови изменяет­ся гораздо медленнее. Повидимому, увеличение вязкости при ацидозе связано в значи­тельной степени с изменением свойств эритроцитов. Это подтверждается эксперименталь­ным изучением влияния алкалоза и ацидоза (метаболического и респираторного) на теку­честь крови.





Установлено, что средняя концентрация гемоглобина в клетке при ацидозе снижается в несколько раз вследствие поступления воды в эритроциты. Между тем при алкалозе среднеклеточная концентрация гемоглобина и вязкость крови увеличиваются [Rand P. et al., 1968].

Установлено, что увеличение тоничности приводит к росту вязкости лишь до момента лизиса клеток [Wells R., 1963; Сох Н., Su GougJen, 1963].

Клеточные факторы (связанные с изменением механических характеристик форменных элементов и их концентрации). Механические свойства форменных элементов тесно сопря­жены с реологическими свойствами цельной крови. Обычно механические характеристики эритроцитов оцениваются интегральным показателем — деформируемостью. Особое значе­ние деформируемость эритроцитов приобретает при течении крови по сосудам, размер кото­рых соизмерим с размерами самих эритроцитов. На практике, при оценке кровообращения в мелких сосудах, речь идет уже не о реологических свойствах крови, а об аналогичных свойст­вах эритроцитов. В норме эритроциты обладают значительной податливостью формы (де­формируемостью).

J. Fung (1981) в своем фундаментальном руководстве приводит расчеты, показывающие, что поле напряжений всего в 2 Па приводит к изменению геометрических пропорций эрит­роцита примерно на 200 %, а также излагает гипотезу о феномене «переливающейся цистер­ны» в сдвиговом потоке (рис. 10.8).

Значительное воздействие на реологические свойства крови оказывает и концентрация эритроцитов. В соответствии с тем что на текучесть суспензии большое влияние оказывает объемный показатель дисперсной фазы, обычно рассматривается влияние на вязкость крови гематокрита.

С увеличением гематокрита вязкость крови возрастает. Это установлено многочислен­ными исследователями [Merril Е., Wells R., 1961; Snyder G., 1971].

Поданным некоторых ав­торов [Weaver J. et al., 1969], увеличение гематокритного числа от 0,4 до 0,5 может сопровож­даться увеличением вязкости на 25 %.

Зависимость между текучестью крови и объемной концентрацией эритроцитов нелинейна. Так, в эксперименте с использованием ультразвуко­вого вискозиметра установлено, что увеличение гематокритного числа от 0,1 до 0,4 сопро­вождается значительно меньшим изменением вязкости, чем увеличение его от 0,4 до 0, [Reetsma К., Green О., 1962].

Неоднократно предпринимались попытки установить функциональную зависимость между текучестью крови и гематокритным числом. Существует целое «семейство» зависи Рис. 10.8. Феномен «переливания цистерны».

Горизонтальными стрелками обозначено направление движения эритроцитов, остальными — направление перемещения оболочки и содержимого эритроцитов.

мостей типа экспоненциальной. Авторов, предлагающих такого типа зависимости, подкупа­ло, повидимому, то, что этим можно было объяснить «скачки» вязкости, вызываемые зачас­тую незначительным увеличением гематокритного числа.

V. Wand (цит. по E.W. Merril, 1969) предложена следующая формула зависимости вяз­кости крови от гематокритного числа:

Пкроаи = л™ (1 + 0,25Н + 7,35 • Ю4 ¦ Н2).

По мнению E.W. Merril (1969), эта формула справедлива для гематокритного числа 0—0,5 и области низкой асимптотической вязкости. Любопытно, что предметом доктор­ской диссертации великого физика А. Эйнштейна было определение взаимосвязи между параметрами дисперсной фазы и вязкостью суспензии в целом. Он получил следующий ре­зультат:

т! = n<, О + к • Ф), где н0 — вязкость дисперсионной среды: Ф — объемная концентрация частиц; к — коэффи­циент, равный 2,5, для твердых сферических частиц [Charm S., Kurland G., 1974].

Формула А. Эйнштейна выведена для объемной концентрации частиц не более 1 %, од­нако некоторые авторы при оценке зависимости вязкости крови от гематокритного числа ссьшаются на удовлетворительные результаты расчетов с ее использованием [Charm S., Kur­land G., 1974].

Пользуется популярностью соотношение Тейлора для эмульсии сферических жидких частиц:

Pages:     | 1 |   ...   | 130 | 131 || 133 | 134 |   ...   | 140 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.