WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 14 | 15 || 17 | 18 |   ...   | 29 |

Надо обязательно добавить, что опционы и фьючерсы в странах с недоразвитой экономикой – это вовсе не панацея от финансовых крахов. У многих на памяти истории августа 1998 года, когда люди, захеджировавшие свои рублевые позиции, понесли колоссальные убытки изза отказа проигрывающих сторон в полном объеме исполнять свои обязательства по долларовым фьючерсам, что вызвало принудительное закрытие позиций. Полностью эти позиции не могли быть закрыты уже потому, что вариационная маржа в большом процентном отношении была обеспечена государственными краткосрочными облигациями, по которым как раз был объявлен дефолт. Таким образом, убытки хеджеров оказались двусторонними: от вложений в ГКО по факту дефолта и от вложений во фьючерсы по факту недовыплаченной вариационной маржи.

Тем не менее, в спокойные времена деривативы являются естественным средством управления фондовыми рисками, и именно в этом надежном качестве мы их здесь и рассматриваем.

Когда хеджируется не отдельный актив, а совокупность активов, портфель реальных бумаг (в частном случае это пай взаимного фонда), тогда хеджирование идет на индексной основе. Проводится стилевой анализ совокупности активов, по результатам которого устанавливается модельный портфель, наполненный модельными активами в той пропорции, чтобы построенный модельный портфель наилучшим образом отвечал портфелю реальному. Каждому модельному активу соответствует фондовый индекс, и, чтобы осуществить хеджирование модельного актива, необходимо приобрести соответствующее количество индексных опционов.

Например, по состоянию на 11 декабря 2001 года, американский инвестор имеет миллион 26 тыс. долларов, вложенных в высококапитализированные акции американских компаний. Будем для простоты считать, что стилевой анализ показывает 100%ое соответствие вложений индексу S&P500. Инвестор принимает решение хеджировать портфель индексными опционами со страйком, ближайшим к котировке индекса на текущую дату (S0 = 1142). При этом он хеджируется из расчета на Т = 1 месяц = 1/12 года существования портфеля.

Результатом хеджирования является приобретение индексных опционов с тикером SPT MHE, страйк dP = 1140, дата погашения – 18 января 2002 года. Общее их количество определяется из того расчета, что один базисный пункт индексного опциона покрывает 100 долларов подлежащего ему актива. Чтобы захеджировать млн. долларов опционами данного тикера, необходимо приобрести 1026000 : 1140 :

100 = 9 стандартных опционных контрактов. Это обойдется инвестору в 32.3 * * 9 = 29070 долларов опционной премии, или порядка 3% дополнительных инвестиций. Здесь zP = 32.3 – опционная премия из расчета на один базисный пункт опционного контракта.

Если в ближайший от покупки месяц индекс вырастет, например, до SТ = 1209, то есть на 6 процентов, тогда вложения в putопционы оказываются напрасными, и тогда доходность от вложений может быть определена по формуле. (3.24) В данном случае v = 34.5% годовых, без учета реинвестирования.

Наоборот, если индекс упадет, например, до SТ = 1072, то есть на 6 процентов вниз, тогда putопцион оказывается в деньгах, и доходность вложений, согласно (3.24), становится равной v = 33.1% годовых.

Если бы опцион не приобретался, то простейшие вычисления дают доходность подлежащего актива 72% годовых при первом сценарии развития событий и (72%) годовых – при втором сценарии. Видим, что волатильность вложений, измеренная как разбег доходности применительно к двум сценариям развития событий, вполовину меньше для хеджированного актива.

В самом общем случае, когда установлена плотность вероятностного распределения будущей цены подлежащего актива j(SТ), тогда плотность распределения финальной доходности сборки «put + подлежащий актив» определяется по формуле [53]:

(3.25) где (3.26) граничный нижний уровень доходности сборки «put + актив», который известен заранее при ее покупке, (3.27) вероятность события ST < dp, когда опцион оказывается в деньгах, d(·) – дельтафункция, равная бесконечности к нулевой абсциссе и нулю во всех остальных точках.

Что касается вида j(SТ), то удобно искать эту функцию в виде плотности гауссовского распределения с нечеткими параметрами среднего и среднеквадратического отклонения, как это обосновывается в [53]. Тогда (5.24) имеет вид усеченной слева плотности нормального распределения с нечеткими параметрами, с дельтафункцией на левом конце распределения, бимодальной формы (рис. 3.5).



Введем бимодальную функцию самого общего вида, которую далее будем называть функцией вида H(v0, v1). Для нее значение v0, определяемое (3.26) – это абсцисса левого максимума плотности дельтафункции; v1 – абсцисса правого максимума плотности распределения, определяемая по формуле Рис. 3.5. Плотность распределения доходности сборки, (3.28) где среднее значение ожидаемой цены подлежащего актива через время T, треугольное нечеткое число. Понятно, что v1 > 0, в противном случае проводить инвестирование в хеджированный актив или хеджироваться нет никакого смысла.

Вводя этот обобщенный вид бимодальной функции, мы сознательно не настаиваем на том, что непрерывная ее часть будет иметь нормальный вид.

В важном частном случае, когда хеджирование отсутствует, zP = 0, v0 = 1/T, К = 0, и распределение H(v0, v1) сходится к обыкновенному нормальному виду, если распределение цены подлежащего актива нормально. При нулевой дисперсии эта нормальная плотность распределения вырождается в дельтафункцию, что соответствует определенной доходности безрискового актива. Таким образом, классические распределения доходности активов являются вырожденными частными случаями более сложного распределения H(v0, v1)вида.

Можем ли мы, зная распределения доходности отдельных хеджированных активов, получить распределение доходности модельного портфеля на их основе аналитическим путем? К величайшему сожалению, нет. Математическая теория композиции вероятностных распределений свидетельствует о том, что сумма двух стохастически зависимых случайных величин с усеченнонормальным распределением есть случайная величина, не обладающая усеченнонормальным распределением. В результирующем вероятностном распределении такой величины плотность является мультимодальной функцией. Все это говорит о том, что точному аналитическому решению задача оптимизации модельного портфеля с хеджированными активами не поддается.

В качестве альтернативы можно предолжить для оптимизации хеджированного модельный портфеля схему минимизации уровня предельных потерь. Действительно, по каждому хеджированному активу известна минимальная доходность v0i.

Соответственно, минимальная доходность по портфелю составляет, (3.29) где хi – доли компонент в портфеле. Максимизируя V0, мы решаем задачу нелинейной оптимизции относительно не только оптимального распределения долей активов, но и глубины их хеджирования, а также соотношения страйков по putопционам и размеров опционных премий.

Оптимизация функционала (3.29) не является оптимизацией модельного портфеля в постановке Марковица уже потому, что в качестве ограничения в задаче оптимизации здесь не выступает риск портфеля. Чтобы учесть параметры риска в оптимизации, можно перед решением задачи (3.29) решить классическую задачу Марковица, а в задаче (3.29) оптимизировать уже только параметры хеджирования, зафиксировав веса компонент. Такой компромисс позволяет избежать применения статистического моделирования портфеля в духе МонтеКарло, которое я лично считаю недопустимой методикой для оптимизации фондового портфеля.

Выводы по главе Мы предложили здесь совершенно новый способ решения задачи портфельной оптимизации. При этом мы вернули в научный обиход метод Марковица, сняв критические допущения о вероятностном распределении доходности активов. В ходе решения задачи Марковица в нечеткой постановке мы получаем оптимальный портфель с размытыми границами. Это означает, что мы можем совершать перемещения в пределах этих границ, но ничто уже не позволит нам улучшить этот результат, сузить допустимый диапазон изменений, потому что существует неустранимая информационная неопределенность в части исходных данных.

Сформировав модельный портфель, мы можем наполнить его реальными активами, руководствуясь комплексными оценками инвестиционного качества соответствующих ценных бумаг. Такой подход позволяет избежать необоснованной оптимизации портфеля реальных активов по Марковицу, в координатах «рискдоходность».





Хеджирование портфеля – это практика, которая ждет нового теоретического осмысления, причем не только в России, но и во всем мире. Формула БлэкаШоулза оценки справедливой цены опциона не устояла перед натиском реальности, что не захотела вписываться в модель винеровского случайного процесса. Поэтому сейчас активно разрабатываются альтернативные теории справедливой оценки опционов. Мы тоже рассчитываем приложить руку к разработке этой теории, тем более что уже удалось выполнить ряд важных исследований, проясняющих базовые моменты теории оптимального хеджирования активов. Научную работу в этом направлении мы планируем возобновить в тот момент, когда на российском рынке появятся индексные опционы (через годдва), и возникнет практическая потребность в разработке соответствующих методик и программных средств.

Глава 4. Прогнозирование фондовых индексов Введение в современную теорию рационального инвестиционного выбора Оптимизация модельного фондового портфеля базируется на исходных данных по индексам, которые являются результатом научного прогнозирования.

Прогнозирование фондовых индексов – это задача, которая перестает быть научной при том условии, когда к теории прогнозирования предъявляются завышенные требования предсказания вполне точных значений тех или иных параметров в будущем. Современная теория прогнозирования фондовых индексов базируется на том, что предсказанию подлежат не сами индексы, а их рациональные тенденции, обусловленные рациональным поведением коллективного инвестора в фондовые активы.

Существует целый класс теорий прогнозирования, базирующихся на историческом анализе данных. Ни одна из этих теорий не контролирует состоятельность данных, поступающих на вход соответствующих методов. Однако в том случае, когда между историческими данными и будущим лежит парадигмальный эпистемологический разрыв [45], то соответствующая предыстория индексов существенно обесценивается, а базирующиеся на использовании этой статистики методы начинают давать ошибочные неверифицируемые прогнозы. Нынешний кризис фондового рынка был превосходным тестом для всех существовавших доныне методов прогнозирования, которые этот тест не прошли.

Следовательно, перед наукой прогнозирования тенденций фондового рынка (если она признает себя таковой) встает задача смены основ, на которой базируется эта наука. И возможной новой основой для современной теории прогнозирования как раз и может стать В своей работе [75] я зафиксировал то понимание проблем прогнозирования фондовых индексов в современных условиях, которое я считаю научным. Резюме этой моей работы таково.

Американский рынок, долгое время пребывавший в фазе эйфории относительно своих экономических возможностей, в настоящий момент, преодолевая истерию и панику, ищет новые экономические ориентиры. Еще несколько лет потрясений нам обеспечены, я думаю, но свет в конце тоннеля уже виден. Это – нарастающая рационализация инвестиционного выбора, и под этим флагом мировой фондовый рынок будет плавать еще не менее ближайших лет пяти. Шок от потрясения, вызванного сдуванием мыльного пузыря «новой экономики», еще должен быть хорошенько пережит, переосмыслен.

Следствие: оптимальное управление фондовыми портфелями лиц и организаций постепенно приобретает черты активного, оперативного и алертного управления.

Активное управление предполагает отказ от пассивных стратегий ведения портфеля (например, в привязке к рыночным индексам, по принципу балансовых фондов).

Оперативное управление осуществляется в режиме реального времени, с непрерывной переоценкой уровня оптимальности портфеля (даже в рамках одного торгового дня, нынешние компьютерные программы это позволяют). Алертное управление предполагает наличие в системе установленных предупредительных сигналов, срабатывающих на изменение уставленных макроэкономических, финансовых, политических и иных параметров. Срабатывание алерта вызывает автоматическое выполение некоторой цепочки предустановленных решающих правил по ребалансингу фондового протфеля.

Pages:     | 1 |   ...   | 14 | 15 || 17 | 18 |   ...   | 29 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.