WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 5 | 6 || 8 | 9 |   ...   | 29 |

Неуверенность ЛПР в своих оценках ситуации порождает качественные высказывания в терминах естественного языка. Например, рассматривая фундаментальные характеристики ценной бумаги, инвестор оценивает текущее значение показателя P/E (цена к доходам), которое равно 20. «Много» это или «мало», вот вопрос. На этом этапе инвестор может обратиться к финансовому консультанту. Точным ответом на вопрос инвестора будет гистограмма, где по оси Х отложены значения показателя P/E, а по оси Y – то, с какой относительной частотой выпадают те или иные значения показателя для предприятий той же отрасли, что и объект анализа.

Анализируя гистограмму, инвестор может задаться вопросом, почему одним компаниям позволено иметь большие значения P/E, а другим – меньшие, и какой уровень P/E следует считать объективным. Инвестор опять беспокоит своего консультанта, и тот выдает заключение. Оказывается, доходность бумаги состоит в обратном отношении к ее надежности, и зачастую люди покупают высококапитализированные компании, имея ввиду в первую очередь низкий риск дефолта, а во вторую очередь рассматривая уже соображения, связанные с доходностью. Что до объективного уровня, то все зависит от периода анализа.

Например, для высокотехнологичных компаний в 19992000 г.г. характерным уровнем P/E был уровень в несколько десятков единиц. Сегодня же типовое значение – 1015, потому что произошла коррекция.

И вот инвестор созрел для того, чтобы принимать решение. Он говорит себе:

«Сегодня у компании Х цена акций $20, а соотношение P/E составляет 41. Ее капитализация – 100 млрд долларов, однако я считаю, что компания все равно переоценена, и такой уровень P/E – слишком высокий. Для этой компании я считаю приемлемым диапазон P/E порядка 3035. И даже если сегодня цена компании растет, я тем не менее нахожу, что этот рост ненадежен и может смениться спадом. Я буду покупать эти акции при целевой цене на уровне $15$17, что соответствует моим ожиданиям».

Таким образом, инвестор произвел свою самостоятельную оценку ситуации и принял решение. При этом в основаниях этого решения мы можем увидеть:

ожидания – связанные с перспективами роста данных акций;

нечеткую классификацию, когда инвестор сопоставлял текущую капитализацию компании с ее P/E и производил анализ уровня показателя.

Все, что инвестор говорит на словах, он может вполне трансформировать в описания на языке математики. И тогда ожидания, предпочтения и нечеткие оценки, сделанные инвестором, явятся исходной инвформацией для моделирования предпосылок для принятия (непринятия) инвестиционного решения.

Оценивая акции, инвестор может производить и макроэкономические оценки, например, перспектив тех или иных отраслей или даже национальной экономики. Уже в том утверждении, что США проходят фазу рецессии, содержится огромное количество информации, которую необходимо учитывать для принятии решения.

Подробно об этом говорится в главе 2 книги, а сейчас ограничимся тем замечанием, что рецессия ставит одни отрасли в привелегированное положение, а другие отрасли оказываются ущемленными. Значит, идет межотраслевое перераспределение инвестиционных рисков, которое надо иметь ввиду.

Инвестор, покупая или продавая акции, должен составить себе мнение о том, какой рынок сейчас одерживает победу – «медвежий» или «бычий». Это дает ему основания считать, «что на «медвежьем» рынке переоцененные активы, скорее всего, упадут, а недооцененные, если и упадут, то неглубоко. И наоборот: на «бычем» рынке недооцененные активы, скорее всего, возрастут, а переоцененные, если и возрастут, то несильно». Все, что отмечено курсивом в этих закавыченных предложениях, представляет собой предмет оценки инвестором текущего состояния рынка и его переспектив.

Таким образом, на примере инвестиционных решений, мы заключаем, что огромное количество информации содержится в трудноформализуемых интуитивных предпочтениях ЛПР. Если эти предпочтения и допущения ЛПР обретают вербальную форму, они сразу же могут получить количественную оценку на базе формализмов теории нечетких множеств и составить обособленный контент исходной информации в рамках финансовой модели. Мы можем назвать этот обособленный контент экспертной моделью.

Информация экспертной модели образует информационную ситуацию относительно уровня входной неопределенности финансовой модели. Она выступает как фильтр для исходных оценок параметров, преобразуя их из ряда наблюдений квазистатистики в функции принадлежности соответствующего носителя параметра тем или иным нечетко описанным кластерам (состояниям уровня параметра). Таким образом, от нечеткой оценки входных параметров после ряда преобразований мы можем перейти к нечетким оценкам финансовых результатов и оценить риск их недостижения в рамках принимаемых в плановом порядке финансовых решений.



Значимость нечетких описаний при принятии финансовых решений Проанализировав состояние теории финансового менеджмента, мы находим, что применяемые в практике финансового менеджмента методы комплексного финансового анализа, оценки эффективности и риска инвестиционного проекта, модели и методы оптимизации фондового портфеля, методы прогнозирования параметров финансовой модели хозяйствующего субъекта являются неадекватными характеру поступающей на вход финансовой модели прогнозной информации о состоянии внешнего окружения хозяйствующего субъекта. Помимо этого, существующие методы не учитывают субъективный характер принимаемых решений, не моделируют позначательную активность лица, принимающего финансовые решения, его неполную информационную осведомленность и возникающую в связи с этим неуверенность в ходе классификации уровней анализируемых факторов и показателей. В этом и состоит существо проблемы, которую я ставлю и разрешаю в настоящей монографии.

Применяемые для учета неопределенности субъективновероятностные схемы являются неудовлетворительными, так как, потеряв связь с классической основой вероятностной теории – частотной характеристикой генеральной совокупности однородных событий, возникающих при неизменных внешних условиях, субъективноаксиологические вероятности не нашли новой фундаментальной основы для своего существования. Вероятность, используемая в ходе оценки, ничего не говорит о субъективных предпочтениях лица, который выдвинул эту вероятностную оценку. Поэтому существует актуальная научная потребность в выработке новых принципов учета информационной неопределенности, связанной с объектом научного исследования. В объект, как мы уже отмечали, входит финансовая система хозяйствующего субъекта и лица, принимающие финансовые решения в этой системе.

Именно поэтому я здесь и во всех предшествующих своих научных работах предлагаю в качестве новой основы для моделирования неопределенности использовать формализмы теории нечетких множеств. Преимущества такого подхода к разрешению проблемы диссертационной работы состоят в следующем:

нечеткие множества идеально описывают субъектную активность ЛПР. Неуверенность эксперта в оценке может моделироваться функцией принадлежности, носителем которой выступает допустимое множество значений анализируемого фактора. Помимо этого, ЛПР получает возможность количественной интерпретации признаков, первоначально сформулированных качественно, в терминах естественного языка;

нечеткие числа (разновидность нечетких множеств) идеально подходят для планирования факторов во времени, когда их будущая оценка затруднена (размыта, не имеет достаточных вероятностных оснований). Таки образом, все сценарии по тем или иным отдельным факторам могут быть сведены в один сводный сценарий в форме треугольного числа, где выделяются три точки: минимально возможное, наиболее ожидаемое и максимально возможное значения фактора. При этом веса отдельных сценариев в структуре сводного сценария формализуются как треугольная функция принадлежности уровня фактора нечеткому множеству «примерного равенства среднему»;

мы можем в пределах одной модели формализовывать как особенности экономического объекта, так и познавательные особенности связанных с этим объектом субъектов менеджера и аналитика, порождая экспертную модель в структуре обобщенной финансовой модели хозяйствующего субъекта. Таким образом возникает платформа для интеграции принципиально разнородных знаний в рамках одной количественной финансовой модели;

мы можем вернуть вероятностные описания в свой научный обиход, как вероятностные распределения с нечеткими параметрами. Нечеткость параметров распределения обусловлена тем, что классически понимаемой статистической выборки наблюдений нет, и для анализа мы пользуемся научной категорией квазистатистики. При таком подходе треугольные параметры распределения устанавливаются на основе процедуры установления степени правдоподобия. Таким образом, наметился путь для синтеза вероятностных и нечеткомножественных описаний. Без вероятностных распределений не обойтись там, где речь идет о моделировании случайных процессов (например, в фондовом менеджменте);





мы можем получить принципиально новый класс методов комплексного финансового анализа, основанных на увязывании ряда отдельных финансовых показателей в единый комплексный показатель финансового состояния хозяйствующего субъекта. Мы можем при этом отказаться от идеи Альтмана для оценки риска банкротства (как от специфическичастного метода, который не в состоянии учитывать всю необходимую специфику финансового состояния каждого отдельного хозяйствующего субъекта), равно как и от ряда аналогичных методов (ТоффлераТисшоу [150], Лиса, Чессера, ДавыдовойБеликова [23] и др.), при этом формируя перечень участвующих в оценке отдельных финансовых факторов и их весов самостоятельно, с учетом фактической специфики анализируемого хозяйствующего субъекта;

мы можем отказаться от сценарного моделирования при инвестиционном проектировании, предполагая, что все возможные сценарии развития событий, отражающиеся во входных параметрах финансовой модели (уровень затрат, выручки, фактора дисконтирования и т.д.) учтены в соответствующих треугольно–нечетких оценках, а веса вхождения соответствующего сценария в полную группу характеризуются функцией принадлежности соответствующего треугольного числа;

мы можем воспользоваться матричной схемой для оценки комплексного финансового состояния хозяйствующего субъекта для построения методов оценки качественного уровня ценных бумаг – рейтинга облигаций и скоринга акций;

мы можем вернуться к продуктивной идее Гарри Марковица для оптимизации фондового портфеля по схеме MVA (meanvariance analysis), записав задачу портфельной оптимизации в нечеткой постановке. Результатом решения этой задачи яявляется эффективная граница портфельного множества в форме криволинейной полосы и оптимальный портфель с нечеткими границами, построенный для предельно допустимого уровня риска портфеля;

мы можем отказаться от применения методов ARCH/GARCH для среднесрочного и долгосрочного прогнозирования фондовых идексов (в связи с тем, что при смене макроэкономической парадигмы эти методы перестают быть адекватными), предложив метод прогнозирования фондовых индексов на основе количественного анализа рациональных инвестиционных тенденций, Прогнозы по индексам будут иметь вид треугольных нечетких последовательностей.

Руководствуясь изложенным, я разработал целый ряд методов оценки инвестиционной привлекательности фондовых активов и портфелей на их основе. К ним относятся методы рейтинга облигаций, скоринга акций, метода портфельной оптимизации в нечеткой постановке. Также мной разработаны основы новой теории прогнозирования фондовых индексов, с использованием результатов теории нечетких множеств. Эта теория получила свое практическое подтверждение в прогнозах, сделанных мною за год до второго падения фондового рынка США в 2002 году и оправдавшиеся полностью, не только качественно, но и количественно (я сделал эти прогнозы в [67] за год до событий). Все вышеперечисленные методы излагаются мной в главах 2 – 4 настоящей монографии.

Все изложенные в книге методы получили свое внедрение в систему оптимизации фондового портфеля, внедренной, в частности, в Пенсионном Фонде Российской Федерации (об этом – в главе 5 нашей книги).

Глава 2. Оценка инвестиционной привлекательности фондовых активов Недостаточность традиционных подходов к оценке инвестиционной привлекательности фондовых активов В качестве аналитика фондового рынка я работаю последние четыре года. Поэтому все мои основные научные результаты (как я их сам оцениваю) получены именно в области фондового менеджмента После августовского кризиса 1998 года спрос на научные работы в области фондового менеджмента в России исходил исключительно от западных компаний. При этом этот спрос был целевым и подразумевал большей частью исследования практического характера, направленные на разработку специализированных программ для работы на фондовом рынке, в том числе портфолиоменеджеров.

Pages:     | 1 |   ...   | 5 | 6 || 8 | 9 |   ...   | 29 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.