WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 10 | 11 || 13 | 14 |   ...   | 23 |

Триггерные импульсы обусловлены задержанной постдеполяризацией, амплитуда которой достаточно велика для доведения мембранного потенциала до порогового уровня. Задержанная постдеполяризация — это транзиторная деполяризация, наблюдающаяся после окончания потенциала действия, но возникающая благодаря именно этому потенциалу. В норме задержанная постдеполяризация была зарегистрирована в предсердных клетках митрального клапана [40], в клетках коронарного синуса [41] ив предсердных волокнах гребенчатых мышц [42]. Как показывает рис. 3.7, задержанной постдеполяризации часто предшествует постгиперполяризация: следующий за потенциалом действия мембранный потенциал на короткое время становится более отрицательным, чем непосредственно перед началом потенциала действия. При затухании этой постгиперполяризации мембранный потенциал временно становится более положительным, чем непосредственно перед началом потенциала действия. Кратковременность изменений такой постдеполяризации четко отличает ее от нормальной спонтанной диастолической (пейсмекерной) деполяризации, при которой мембранный потенциал монотонно изменяется до тех пор, пока не возникнет следующий потенциал действия.

Задержанная постдеполяризация обычно бывает подпороговой, но в определенных условиях она может превысить пороговый потенциал; если это происходит, вследствие постдеполяризации возникает спонтанный потенциал действия. В упомянутых выше предсердных волокнах катехоламины увеличивают амплитуду постдеполяризации, в результате чего достигается уровень порогового потенциала [40, 41]. Амплитуда подпороговой постдеполяризации весьма чувствительна и к частоте возникновения по тенциала действия [39, 42]. Повышение частоты стимуляции увеличивает амплитуду постдеполяризации (рис. 3.8), и, наоборот, уменьшение ее частоты приводит к снижению амплитуды. Кроме того, если преждевременный потенциал действия при стимуляции возникает с постоянной частотой, то следующая за ним постдеполяризация имеет большую амплитуду, чем та, которая отмечается после регулярного потенциала действия. Более того, чем раньше во время основного цикла возникает преждевременный потенциал действия, тем больше амплитуда преждевременной постдеполяризации. При достаточно высокой частоте постоянной стимуляции или после достаточно раннего преждевременного стимула постдеполяризация может достигнуть порога и вызвать нестимулированные потенциалы действия. Первый спонтанный импульс отмечается после более короткого интервала по сравнению с длительностью основного цикла, так как постдеполяризация, вследствие которой он возник, начинается вскоре после реполяризации предшествующего потенциала действия. Следовательно, спонтанный импульс вызывает еще одну постдеполяризацию, которая также достигает порогового уровня, обусловливая появление второго спонтанного импульса (см. рис. 3.8). Этот последний импульс вызывает следующую постдеполяризацию, которая инициирует третий спонтанный импульс, и так на протяжении всего времени триггерной активности. Триггерная активность может спонтанно прекратиться, и, если это происходит, за последним нестимулированным импульсом обычно следует одна или несколько подпороговых постдеполяризаций.

Рис. 3.8. Индукция триггерной активности в предсердном волокне митрального клапана у обезьяны.

На каждом фрагменте показаны лишь нижняя часть потенциалов действия. Горизонтальные линии на фрагментах I и II проведены на уровне—30 мВ, а на фрагменте III — на уровне — 20 мВ. фрагмент IA и 1Б: триггерная активность, возникшая в результате сокращения длительности основного стимуляционного цикла. IA: продолжительность цикла стимуляции составляет 3400 мс; и за каждым потенциалом действия следует подпороговая задержанная постдеполяризация. В начале фрагмента IБ длительность цикла стимуляции сокращена до 1700 мс; заметно постепенное повышение амплитуды постдеполяризации, следующей за каждым из первых 4 вызванных стимуляцией потенциалов действия. За последним вызванным потенциалом действия следует спонтанный потенциал действия, а затем поддерживающаяся ритмическая активность, частота которой выше, чем при стимуляции. IIА и IIБ: возникновение ритмической активности вследствие единственного вызванного импульса. IIА: после периода покоя за единственным вызванным потенциалом действия (стрелка) следует подпороговая постдеполяризация. IIБ: в несколько иных условиях — после одиночного вызванного потенциала действия (стрелка) отмечается поддерживающаяся ритмическая активность. IIIA и IIIБ: возникновение триггерной активности вследствие преждевременной стимуляции. IIIA: преждевременный импульс (стрелка) вызывается во время фазы реполяризации постдеполяризации, и амплитуда последующей постдеполяризации возрастает. IIIБ: за преждевременным импульсом (большая стрелка) следует постдеполяризация, которая достигает порога (маленькая стрелка) и приводит к появлению ряда триггерных импульсов [40].



Ионная природа токов, ответственных за возникновение постдеполяризации, а также механизм, изменяющий амплитуду постдеполяризаций при изменении продолжительности цикла стимуляции, неизвестны. Амплитуду постдеполяризации можно снизить с помощью лекарственных препаратов, способных уменьшать входящий ток, текущий через медленные Na+,Са2+каналы. Эти препараты способны также предотвращать развитие триггерной активности [39—41]. Считается, однако, что медленный входящий ток не принимает непосредственного участия в инициации постдеполяризаций; как полагают, ионы кальция, входящие в клетку через медленные каналы (а возможно, и другими путями), обусловливают появление в некоторых из них задержанного входящего тока, вызывающего постдеполяризацию [43].

Потенциал покоя и потенциал действия в нормальных клетках синусового и атриовентрикулярного узлов Электрическая активность клеток синусового и АВузлов весьма отличается от таковой в клетках специализированной проводящей системы желудочков или рабочего миокарда предсердий и желудочков, обсуждавшихся ранее. Благодаря своим необычным электрофизиологическим характеристикам клетки узлов часто принимают участие в инициации и поддержании аритмии. Ввиду существования значительных различий между клетками узла и другими клетками сердца их нормальные электрические характеристики целесообразно рассматривать отдельно.

Потенциал покоя Клетки синусового узла обычно постоянно активны и редко находятся в покое, поэтому, строго говоря, при их описании не следует использовать термин «потенциал покоя». Однако максимальный диастолический потенциал (наиболее отрицательный уровень мембранного потенциала сразу после потенциала действия реполяризации) легко измеряется и оказывается значительно менее отрицательным (примерно на 20 мВ), чем максимальный диастолический потенциал волокон Пуркинье или клеток предсердий и желудочков (рис. 3.9). Максимальный диастолический потенциал клеток АВузла по своей величине аналогичен наблюдаемому в клетках синусового узла. Значения внутриклеточной концентрации K+ (а значит, и величина ЕK) в клетках синусового узла, повидимому, близки к зарегистрированным в сердечных клетках с гораздо более высоким потенциалом покоя [44]. Следовательно, более низкий мембранный потенциал клеток синусового и атриовентрикулярного узлов обусловлен более высоким отношением коэффициентов натриевой и калиевой проницаемости (РNа/РK) мембраны этих клеток по сравнению с клетками предсердий и желудочков или волокон Пуркинье. Правда, пока неясно, в какой степени более высокое отношение PNa—РК в клетках узлов обусловлено меньшей величиной РK, а в какой — большей величиной pna. Дальнейшие исследования, однако, покажут, имеют ли узловые клетки необычно высокую проницаемость для Na+ в покое или они обладают необычно низкой проницаемостью для K+.

Фазы деполяризации и реполяризации потенциала действия В клетках синусового и атриовентрикулярного узлов скорость деполяризации в нулевую фазу намного ниже (1—20 В/с), чем в нормальных волокнах Пуркинье или клетках рабочего миокарда (см. рис. 3.9). Амплитуда потенциалов действия также весьма невелика (60—80 мВ); в некоторых клетках пик потенциала действия не превышает 0 мВ [3]. По сравнению с другими сердечными клетками более низкая скорость нарастания и меньшая амплитуда потенциала действия узловых клеток отражают значительно меньшую величину входящего тока перед нулевой фазой деполяризации в этих клетках. Имеющиеся в настоящее время данные однозначно свидетельствуют о том, что меньший по величине входящий ток в клетках синусового и атриовентрикулярного узлов течет не через быстрые натриевые каналы, а через медленные каналы и переносится ионами натрия и кальция (45— 47]. Такие потенциалы действия с нарастанием, зависящим от медленного входящего тока, часто называют «медленными ответами» в отличие от более обычных «быстрых ответов», нарастание в которых зависит от быстрого натриевого тока [20]. Изза столь малой величины суммарного входящего тока и медленной деполяризации в нулевую фазу скорость проведения медленных потенциалов действия через узлы всегда низка (0,01— 0,1 м/с); именно такое медленное проведение в определенных условиях может обусловить возникновение нарушений ритма в тканях узлов. Как отмечалось ранее, медленные каналы для входящего тока имеют совершенно иные характеристики зависимости их воротного механизма от времени и потенциала по сравнению с быстрыми натриевыми каналами. Медленный входящий ток активируется и инактивируется значительно дольше, чем быстрый натриевый ток. Поэтому после нарастания потенциала действия в узлах медленный входящий ток инактивируется только медленно, способствуя деполяризации мембраны в течение всей фазы плато потенциала действия. Активация зависимого от времени и потенциала выходящего калиевого тока вместе с инактивацией медленного входящего тока, повидимому, вызывает реполяризацию клеток узлов, как это было описано для окончания потенциала действия в других сердечных клетках.

Рис. 3.9. Сравнение потенциалов действия синуса и АВузла (указаны стрелками) с потенциалами действия рабочего миокарда и волокон Пуркинье.

Запись потенциалов действия произведена в следующих областях сердца (начиная сверху): синусовый узел, предсердие, атриовентрикулярный узел, пучок Гиса, волокно Пуркинье в ложном сухожилии, терминальное волокно Пуркинье и рабочий миокард желудочков. Заметьте, что возрастание скорости и амплитуда потенциалов действия синуса и АВузла меньше аналогичных параметров в других клетках [3].

Проводимость медленных каналов для входящего тока восстанавливается после реполяризации мембраны также гораздо медленнее, чем проводимость быстрых натриевых каналов [20, 21]. В отличие от других сердечных клеток в узловых клетках при нанесении преждевременного стимула во время конечной фазы реполяризации не отмечается возникновения потенциала действия. В действительности достаточная инактивация проводимости медленных каналов для входящего тока может сохраняться даже после полной реполяризации в клетках, ставших абсолютно рефрактерными к стимуляции [48]. Реактивация происходит постепенно в течение всей диастолы; преждевременные импульсы, вызванные вскоре после полной реполяризации, имеют более медленное нарастание, меньшую амплитуду, чем нормальные импульсы, и распространяются медленнее. Преждевременные импульсы, вызванные позднее во время диастолы, имеют соответственно более быстрое нарастание, более высокую амплитуду и, следовательно, проводятся быстрее [49]. Такое поведение отражает длительность процесса реактивации медленных каналов. Связанный с этим продолжительный рефрактерный период узловой ткани, а также значительное замедление проведения через нее преждевременных импульсов могут быть важными факторами инициации некоторых нарушений сердечного ритма.

Pages:     | 1 |   ...   | 10 | 11 || 13 | 14 |   ...   | 23 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.