WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 14 | 15 || 17 | 18 |   ...   | 23 |

Однако наличие крупных анатомических петель не является необходимым условием для возникновения циркуляции; циркуляция, вызванная медленным проведением и однонаправленным блоком, может наблюдаться и в неветвящихся пучках мышечных волокон, к которым применимы те же основные принципы, что обсуждались ранее для циркуляции в дискретных петлях ткани [74—76]. Механизм циркуляции в неветвящихся пучках волокон Пуркинье или мышечных волокон, получивший название «отражение», показан в правой части рис. 3.14. Отдельные волокна в таких структурах располагаются преимущественно параллельно друг другу с боковым соединением на некоторых участках. Пример неравномерного снижения мембранного потенциала вследствие заболевания в неветвящейся структуре показан в верхней части рисунка. Предполагается, что клетки в центральной части верхнего волокна имеют меньший потенциал покоя, чем клетки нижнего волокна, так что в верхнем волокне возникает однонаправленный блок, тогда как в нижнем волокне — лишь замедленное проведение. Следовательно, импульс, проходящий через неветвящийся пучок, будет блокироваться вблизи средней части верхнего волокна, но сможет медленно проводиться по нижнему волокну. Только после прохождения центрального участка импульс сможет латерально пройти в верхнее волокно и распространяться как в антероградном, так и в ретроградном направлении (см. рис. 3.14). На этом пути он может циркулировать и повторно возбуждать неветвящуюся структуру (ретроградно), а следовательно, и другие части сердца (также повторно).

Недавно был описан другой механизм, способный вызвать феномен «отражения» [77]. Вследствие снижения потенциала покоя медленное проведение наблюдается не во всем пучке, как это показано на рис. 3.14, Б. Напротив, отмечается задержанная активация части пучка в результате электротонического возбуждения области, расположенной дистальнее невозбудимого сегмента. Наличие невозбудимого сегмента может быть обусловлено снижением потенциала покоя и последующей инактивацией натриевых каналов. Более подробное описание этого механизма читатель найдет в оригинальной статье [77].

Циркуляция вследствие дисперсии рефрактерности Циркуляция может наблюдаться и в отсутствие вызванного заболеванием стойкого снижения мембранного потенциала покоя и угнетения деполяризации в нулевую фазу. Однако и в этом случае двумя основными условиями возникновения циркуляции остаются медленное проведение и однонаправленный блок. Оба условия действительны для волокон здорового сердца, если преждевременные импульсы возникают в пределах относительного рефрактерного периода, особенно если рефрактерные периоды соседних групп сердечных волокон существенно различаются. Различия в рефрактерных периодах соседних групп миокардиальных волокон могут усиливаться при заболевании сердца. Ниже приводятся примеры циркуляции, вызванной такой дисперсией рефрактерности.

Рефрактерные периоды клеток нормального АВузла значительно варьируют. Группы клеток предсердной части узла (область ПУ), повидимому, включают по крайней мере две популяции с различными рефрактерными периодами (рис. 3.16) [78]. В соответствующих условиях подобное различие в рефрактерности клеток верхней части узла может привести к образованию функциональных путей циркуляции [78]. В норме синусовый импульс достигает АВузла лишь после восстановления возбудимости обеих групп клеток и таким образом проводится через все эти волокна к пучку Гиса. Точно так же (т. е. по всем волокнам АВузла) распространяется преждевременный предсердный импульс, возникающий достаточно поздно относительно длительности основного цикла. Однако в случае частого нерегулярного ритма или ранних экстравозбуждений неоднородность рефрактерности волокон верхней части АВузла начинает играть значительную роль в проведении. Ранние преждевременные импульсы, проходящие из предсердий в АВузел, могут встретить на своем пути участок с однонаправленным блоком, где длительность рефрактерного периода клеток наибольшая; однако возбуждение сможет проводиться, хотя и медленно, по волокнам верхней части узла, эффективный рефрактерный период которых меньше (см. рис. 3.16). Если скорость проведения раннего преждевременного возбуждения по этим волокнам достаточно мала, импульс может ретроградно пройти в зону однонаправленного блока после того, как восстановится возбудимость волокон этой зоны; затем он вернется в предсердия и повторно возбудит их как циркулирующий импульс или «возвратная экстрасистола» (см. рис. 3.16). Антероградный путь проведения с более коротким рефрактерным периодом был назван Mendez и Мое «альфапутем», а ретроградный путь с более продолжительным рефрактерным периодом — «бетапутем» [78]. Так как нижняя область АВузла не является частью пути циркуляции [78], преждевременный предсердный импульс может циркулировать независимо от наличия или отсутствия проведения возбуждения и в антероградном направлении для активации пучка Гиса и желудочков.



Рис. 3.16. Циркуляция предсердного импульса в АВузле. Фрагменты А и Б— схематическое изображение АВузла, в котором выделены верхняя (ПУ), средняя (У) и нижняя (У Г) области; ПГ обозначает пучок Гиса. Фрагмент А — потенциалы действия, зарегистрированные с двух участков верхней области узла: потенциал действия слева имеет более короткий рефрактерный период, чем потенциал действия справа (отмечено штриховкой). Следовательно, при преждевременном вхождении предсердного импульса в АВузел (стрелки) он способен продвигаться только по той части верхней области АВузла, где рефрактерный период короче, и блокируется на участке с более длительным рефрактерным периодом. Это также видно на кривых потенциала действия, помещенных вверху.

Фрагмент В — возможное развитие событий: распространяющиеся импульсы (стрелки) могут, вернувшись, возбудить ту область АВузла, в которой существует блок антеградного проведения, и таким образом вновь войти в предсердие; потенциал действия, зарегистрированный в цепи возврата, показан выше. Импульс может также проходить по пучку Гиса [16].

Описанные выше механизмы однократной циркуляции предсердных импульсов в АВузле могут обусловить и постоянную циркуляцию. Если импульс циркулирует в предсердии, где волокна узла, ранее возбужденные им антероградно, восстановили свою возбудимость, он может снова войти в АВузел и проводиться по замкнутой цепи [79—81]. Этот процесс может стать повторяющимся: предсердия будут активироваться всякий раз, когда волна возбуждения пройдет по цепи циркуляции. Таков один из возможных механизмов наджелудочковой тахикардии; более подробно это обсуждается в главе 10.

Различия в рефрактерности соседних групп клеток также могут вызвать циркуляцию в проводящих тканях предсердий [82, 83], желудочков [84] и волокон Пуркинье [85, 86] с нормальными электрофизиологическими характеристиками, причем патологические изменения, усиливающие локальные различия в рефрактерности, естественно, способствуют развитию циркуляции [87]. Как и в приведенном выше примере циркуляции в АВузле, здесь для возникновения циркуляции требуется преждевременный импульс. Циркуляция в предсердии, обусловленная механизмом ведущего цикла [83], описана в главе 6. Циркуляция вследствие дисперсии рефрактерности в системе волокон Пуркинье, сохранившихся в зоне инфаркта миокарда, представлена на рис. 3.17. Потенциал действия в этих волокнах чрезвычайно продолжителен, как и рефрактерные периоды (относительный и эффективный) по сравнению с таковыми в волокнах Пуркинье, окруженных участками ткани, не пораженной инфарктом. Кроме того, длительность потенциала действия соседних волокон в зоне инфаркта неодинакова: потенциал действия, как и рефрактерность, в одних волокнах более продолжителен, чем в других. В результате значительной разницы в длительности абсолютного рефрактерного периода клеток соседних участков ранний преждевременный импульс блокируется на участке с наибольшим абсолютным рефрактерным периодом, медленно проводясь тем временем по относительно рефрактерным участкам с менее продолжительным абсолютным рефрактерным периодом (см. рис. 3.17, а). Пока импульс медленно проводится через возбудимую ткань, возбудимость в зоне блока восстанавливается, так что преждевременный импульс в конечном счете возбуждает и эту зону, а затем возвращается к месту своего возникновения как циркулирующая волна. Циркуляция, вызванная таким механизмом, тоже может быть повторяющейся и способна привести к тахикардии.





Рис. 3.17. Механизм циркуляции импульсов вследствие дисперсии рефрактерности в сети субэндокардиальных волокон Пуркинье, покрывающих область обширного инфаркта миокарда. а и б — эндокардиальная поверхность передней папиллярной мышцы левого желудочка (слева) и передней части межжелудочковой перегородки (справа). Более светлые участки на а и б — область инфаркта, покрытая сетью выживших волокон Пуркинье [53]. Потенциалы действия и рефрактерный период в волокнах Пуркинье на разных участках существенно различаются по длительности. Потенциалы действия зарегистрированы в выживших при инфаркте субэндокардиальных волокнах Пуркинье на границе между зоной инфаркта и нормальной тканью (l)f а также в субэндокардиальных волокнах Пуркинье с более продолжительной фазой реполяризации (2 и 3) [S3], а—преждевременный импульс (ПИ) возникает в точке 1 на границе зоны инфаркта и проходит внутри этой зоны (как показано изогнутыми стрелками), где потенциалы действия более продолжительные; при инфракте потенциал действия в точке 3 длительнее, чем в точке 2. Следовательно, преждевременный импульс может возбудить клетки в точке 2, но проведение заблокируется в точке 3. б — дальнейшее развитие событий: ПИ, пройдя через точку 2, активизирует клетки в точке 3 как циркулирующий импульс (ЦП), а затем возвращается к исходной точке (I), которую он также возбуждает как циркулирующий импульс [16].

Преждевременные импульсы, безусловно ответственные за циркуляцию описанных выше типов, могут возникать несколькими путями. Например, они могут появиться спонтанно в синусовом узле или в эктопическом водителе ритма; их можно также вызвать электрической стимуляцией сердца.

Медленное проведение и циркуляция, обусловленные анизотропностью структуры сердечной мышцы Сердечная мышца анизотропна, т. е. ее анатомические и биофизические характеристики меняются в зависимости от направления, в котором они определяются относительно сердечного синцития [88]. Такая анизотропность, влияющая на проведение сердечного импульса, может иногда стать причиной циркуляции [89, 90]. Скорость проведения импульсов в направлении, перпендикулярном длинной оси предсердных или желудочковых волокон, значительно меньше, чем в направлении, параллельном этой оси. Очень медленное проведение наблюдается даже при нормальных величинах потенциала покоя и нарастания потенциала действия. Медленное проведение обусловлено эффективным осевым сопротивлением (сопротивление току в направлении распространения возбуждения), которое гораздо выше в направлении, перпендикулярном проводящему волокну, чем в параллельном ему направлении [88—90]. Более высокое осевое сопротивление частично связано с меньшим количеством и меньшей длиной вставочных дисков, соединяющих боковые поверхности миокардиальных волокон, по сравнению с таковыми, соединяющими торцевые поверхности. Медленное проведение является одним из компонентов, необходимых для возникновения циркуляции, и может быть одним из факторов, способствующих появлению циркуляции в нормальном миокарде предсердий или желудочков.

Аритмия, вызванная автоматизмом и триггерной активностью Доминирование синусового узла над латентными водителями ритма Клетки многих областей сердца в норме способны спонтанно генерировать импульсы. Эти области включают синусовый узел, специализированные волокна предсердий, коронарный синус, АВсоединение и клапаны, а также специализированную проводящую систему желудочков. Однако при заболевании сердца возникновение импульса может наблюдаться практически везде, даже в рабочем миокарде предсердий и желудочков. Клетка (или небольшая группа клеток) становится водителем ритма сердца в том случае, если она первой деполяризуется до порогового уровня и вызывает появление импульса, который обязательно проводится по всему сердцу и возбуждает другие потенциальные водители ритма, прежде чем они смогут спонтанно деполяризоваться до порогового уровня. Место инициации такого импульса получило название доминирующего водителя ритма. Другие области, способные стать водителем ритма, но стимулируемые доминирующим водителем ритма, называются подчиненными, или латентными, водителями ритма.

Рис. 3.18. Основные механизмы, обусловливающие изменения частоты разрядов пейсмекерных волокон.

Pages:     | 1 |   ...   | 14 | 15 || 17 | 18 |   ...   | 23 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.