WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 15 | 16 || 18 | 19 |   ...   | 23 |

Верхняя диаграмма: снижение частоты, вызванное уменьшением наклона диастолической, или пейсмекерной, деполяризации (от а и б) и соответствующее увеличение времени, необходимого для изменения мембранного потенциала до порогового уровня (ПУ). Нижняя диаграмма: снижение частоты, связанное со сдвигом порога потенциала от ПУ1 до ПУ2 и соответствующее увеличение продолжительности цикла (от б до в); показано также дальнейшее снижение частоты вследствие повышения максимального уровня диастолического потенциала (сравните а—в с г—д) [3].

Собственная частота, с которой клеткапейсмекер генерирует импульсы, определяется взаимодействием трех факторов: 1) уровнем максимального диастолического потенциала; 2) уровнем порога потенциала; 3) степенью наклона в фазу 4 деполяризации. Изменение любого из этих факторов влияет на время, затрачиваемое в фазу 4 на изменение мембранного потенциала от максимального диастолического уровня до порогового уровня потенциала (рис. 3.18); следовательно, оно влияет и на частоту возникновения импульса. Например, если максимальный диастолический потенциал возрастает (становится более отрицательным), спонтанная деполяризация до порогового потенциала осуществляется дольше и частота возникновения импульса снижается (см. рис. 3.18). И наоборот, с уменьшением максимального диастолического потенциала частота инициации импульса повышается. Аналогично этому, изменения порогового уровня потенциала или степени наклона во время фазы 4 деполяризации влияют на частоту возникновения импульсов. В здоровом сердце наиболее быстрая деполяризация до порога отмечается в клетках синусового узла; следовательно, собственный ритм синусового узла выше, чем в других клетках. Поэтому синусовый узел обычно является доминирующим водителем ритма.

Если активность синусового узла внезапно прекращается, латентный водитель ритма не сразу начинает генерировать импульсы: обычно они появляются лишь после продолжительного периода молчания. Частота инициации импульсов латентным водителем ритма вначале весьма невелика, но постепенно она повышается до определенного стабильного уровня, который, однако, ниже исходного уровня в синусовом узле [91]. Период молчания, следующий за прекращением синусового ритма, отражает утомление от ингибирующего влияния, оказываемого доминирующим водителем ритма на латентный водитель ритма. В здоровом сердце подобное торможение обычно обеспечивает синусовому узлу функционирование в качестве единственного водителя ритма; оно названо подавлением усиленной стимуляцией (overdrive suppression).

Такое подавление обусловлено более частой стимуляцией клеткипейсмекера по сравнению с ее собственным спонтанным ритмом и опосредовано повышенной активностью Na—Кнасоса. Так как ионы натрия входят в клетку во время каждого потенциала действия, с повышением частоты стимуляции увеличивается количество натрия, входящего в клетку за данное время. Частота активности натриевого насоса в значительной мере определяется внутриклеточной концентрацией натрия, так что при высокой частоте стимуляции активность насоса возрастает [92]. Как уже отмечалось, Na—Кнасос обычно больше работает на выведение ионов Na+ из клетки, чем на введение в нее ионов К+, эффективно генерируя таким образом суммарный выходящий (гиперполяризующий) ток Na+. Когда частота стимуляции латентных клетокпейсмекеров выше их собственного ритма, проходящий благодаря насосу гиперполяризующий ток дополнительно подавляет спонтанное возникновение импульсов в этих клетках. После прекращения активности под влиянием доминирующего водителя ритма такое угнетение латентных клетокпейсмекеров ответственно за период молчания, продолжающийся до тех пор, пока концентрация Nа+ внутри клетки, а значит, и в токе, проходящем'благо даря насосу, не снизится настолько, чтобы латентные клеткипейсмекеры смогли деполяризоваться до порогового уровня, обеспечив тем самым возникновение следующего импульса. Представляется вполне вероятным, что доминирующий водитель ритма контролирует другие потенциальные пейсмекеры с помощью механизма подав ления усиленной стимуляцией независимо от влияния нормального автоматизма или триггерной активности на пейсмекерность других клеток, ведь амплитуда постдеполяризации, при которой возникают триггерные импульсы, также должна снижаться с увеличением тока, проходящего благодаря насосу. Однако влияние доминирующего синусового водителя ритма на нормальный и аномальный (при низком мембранном потенциале) автоматизм может существенно различаться. Аномальный автоматизм (в отличие от нормального) не может подавляться усиленной стимуляцией [93]. Поэтому возникновение импульсов в латентных водителях ритма с аномальным автоматизмом может наблюдаться сразу же после внезапного прекращения активности синусового узла.



Механизмы смещения доминирующего водителя ритма Смещение места возникновения импульсов (водителя ритма) за пределы синусового узла может быть обусловлено либо неспособностью импульсов к активизации сердца, либо усилением их инициации в латентном водителе ритма. Генерирование импульсов в синусовом узле может быть замедленным или даже подавленным в результате изменения активности вегетативной нервной системы [94] либо вследствие поражения синусового узла [95]. Снижение симпатической активности или повышение парасимпатической (вагусной) активности угнетает автоматизм синусового узла; заболевание синусового узла может привести к дегенерации его клеток. Возможен и другой вариант: проведение возбуждения из синусового узла в предсердия может быть ухудшено в какойто части пути. При любом из указанных состояний может иметь место ускользание латентного водителя ритма. Устранение сверхстимуляции в результате ослабления (или исчезновения) синусового ритма позволяет диастолической деполяризации латентного водителя ритма достичь порогового уровня и вызвать появление импульсов. Такой ускользающий ритм в норме наблюдается в АВсоединении (АВузел или пучок Гиса), так как собственный ритм клеток этой области выше, чем в других эктопических зонах. Однако иногда патологический процесс, подавляющий инициацию импульсов в синусовом узле, угнетает ее и в АВсоединении [95]; тогда место возникновения эктопических импульсов обычно находится на какомлибо другом участке проводящей системы предсердий или желудочков. Механизмом спонтанной диастолической деполяризации, предшествующей эктопическому ритму, может служить либо нормальный пейсмекерный ток, возникающий при высоком мембранном потенциале в нормальных волокнах Пуркинье, либо пейсмекерный ток, наблюдаемый при более низком мембранном потенциале в АВклапанах или АВузле.

Многие факторы способны повысить активность латентного водителя ритма и вызвать смещение места инициации возбуждения в эктопическую зону, даже если синусовый узел функционирует нормально. Например, норадреналин, высвобождаемый симпатическими нервными окончаниями, ускоряет спонтанную диастолическую деполяризацию большинства эктопических клетокпейсмекеров, позволяя мембранному потенциалу этих клеток достигнуть порогового уровня, прежде чем они будут активированы импульсом, проведенным из синусового узла [96]. Норадреналин может выделяться локально в определенных очагах эктопической активности, вызывая тем самым смещение водителя ритма [97, 98]. Такой эффект катехоламинов может быть результатом его хорошо известного действия на нормальный пейсмекерный ток в волокнах Пуркинье [99] или же действия на пейсмекерные токи, возникающие при более низких мембранных потенциалах. Известно также, что норадреналин увеличивает амплитуду задержанной постдеполяризации в клетках митрального клапана и коронарного синуса [40, 41], и если постдеполяризация достигает порогового уровня, то триггерная активность может быть инициирована при частоте выше синусовой. Заболевания сердца также могут привести к возникновению активности латентного водителя ритма; так, снижение мембранного потенциала может обусловить появление автоматической активности в клетках предсердий и желудочков, а также в волокнах Пуркинье, как было описано ранее. Такой тип спонтанной активности часто наблюдается при частоте выше синусовой, а значит, место инициации возбуждения может при этом сместиться в пораженную область сердца. Как отмечалось выше, автоматическая активность, вызванная снижением мембранного потенциала, повидимому, не угнетается усиленной стимуляцией, исходящей из синусового узла.

ГЛАВА 4. Связь между аномалиями электролитного состава и аритмией Б. Суравиц (В. Surawicz) Электрическая активность в возбудимых тканях сопровождается изменениями проницаемости клеточной мембраны и трансмембранных потоков ионов. Для лучшего понимания изложенного в главе материала необходимо знание некоторых электрофизиологических основ; читатель может найти это в прекрасных учебниках [1, 2], обзорных статьях и в главе 3 данной книги. Предлагаемое здесь обсуждение электрофизиологической теории охватывает только те явления, которые непосредственно связаны с представленными в этой главе клиническими наблюдениями. Поэтому приведенные экспериментальные данные касаются почти исключительно концентраций электролитов, встречающихся в повседневной клинической практике. Наибольшее внимание уделено ионам калия, так как их роль в развитии аритмии представляется нам более значимой и лучше изученной, чем роль других ионов.





Гиперкалиемия Электрофизиологические механизмы 1. Мембранный потенциал покоя (МПП), или максимальный диастолический потенциал (Относится к миокардиальным волокнам предсердий или желудочков, а также к волокнам Пуркинье). (МДП), снижается (т. е. становится менее отрицательным) при повышении внеклеточной концентрации калия. В диапазоне плазматических концентраций калия, встречающихся in vivo, изменения внутриклеточной концентрации калия весьма ограничены и, следовательно, не способны играть существенной роли в изменении МПП или МДП. Это позволяет нам считать изменения внеклеточной концентрации калия основным фактором, определяющим величину МПП или МДП [3]. При деполяризации, обусловленной повышением внеклеточной концентрации ионов калия, мембранный потенциал приближается к значению, определяемому по уравнению Нернста для мембраны, свободно проницаемой для K+. Это означает, что при плазматической концентрации калия, превышающей норму, мембрана ведет себя как калиевый электрод. МПП в миокарде желудочков составляет около—84 мВ при [К+]0= 5,4 мМ/л; примерно —67 мВ при [К+]0=10,0 мМ/л; около —60 мВ при [К+]0=16,2 мМ/л. При менее отрицательных величинах МПП клетки чаще всего недолго остаются возбудимыми, по крайней мере в ответ на электрический стимул обычной силы.

2. Реполяризация ускоряется, так как возросший [К+]0 повышает проницаемость мембраны для ионов калия и сокращает длительность потенциала действия. В миокардиальных волокнах желудочков такое сокращение обусловлено преимущественно ускорением фазы 3.

3. Диастолическая деполяризация в волокнах Пуркинье связана с повышением проницаемости мембраны для Na+ и, возможно, с ее понижением для K+. Гиперкалиемия, при которой проницаемость мембраны для калия возрастает, уменьшает наклон в фазу 4 (диастолическая деполяризация), тем самым снижая или подавляя автоматизм.

4. Пороговый уровень потенциала снижается (потенциал становится менее отрицательным) при усилении деполяризации (менее отрицательный МПП или МДП). Однако гиперкалиемия обычно вызывает большее изменение МПП в сторону деполяризации, чем изменение порогового потенциала. Это может привести к уменьшению «расстояния» (разности) между МПП и пороговым потенциалом. Поэтому при увеличении [К+]0 не всегда наблюдается снижение скорости проведения или частоты возбуждения пейсмекерных волокон. Напротив, как будет описано ниже, умеренное повышение [К+]0 может ускорить проведение без изменения частоты водителей ритма.

5. Двухфазное влияние повышенного [К+]0 на проведение и возбудимость обусловлено зависимостью последних как от абсолютной величины МПП, так и от разности между МПП и пороговым потенциалом. Если [К+]0 повышается постепенно, проведение сначала ускоряется, а порог возбудимости снижается в связи с уменьшением разности между МПП и пороговым потенциалом. Затем проведение замедляется, а порог возбудимости повышается вследствие снижения абсолютного уровня МПП [4]. Повышение [К+]0 может оказывать такое же двухфазное влияние на частоту спонтанного возбуждения волокон Пуркинье (сначала повышение активности, а затем ее снижение и прекращение).

6. Разные типы сердечных волокон весьма различаются по своей чувствительности к калию [5]. Так, угнетение возбудимости и проведения в миокарде предсердий отмечается при более низком [К+]0 по сравнению с другими миокардиальными волокнами. Изолированные ткани синусового узла и пучка Гиса более «резистентны» к повышению [К+]0, чем рабочий миокард желудочков, который в свою очередь более «резистентен» к высокой концентрации калия, чем миокард предсердий.

Pages:     | 1 |   ...   | 15 | 16 || 18 | 19 |   ...   | 23 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.