WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 9 | 10 || 12 | 13 |   ...   | 31 |

Модель ведущего цикла. При циркуляторной тахикардии, вызванной Allessie и соавт, в небольших миокардиальных препаратах кроличьих предсердий, центр замкнутого пути (или вихрь) образован возбудимой тканью [82—84]. Однако эта ткань приобретает здесь функциональную невозбудимость, так как в центр постоянно вторгаются многочисленные центростремительные мелкие волны со стороны основного замкнутого пути, расположенного за пределами вихря (рис. 7.9, В).

Критический анализ предложенной Allessie и соавт, модели ведущего цикла показывает, что это действительно особая модификация модели циркуляции с замкнутым путем в форме восьмерки, которая, вероятно, может существовать только в изоли Рис. 7.8. Изохронная карта активации при мономорфной циркуляторной желудочковой тахикардии.

Регистрация осуществлялась в сердце собаки через 4 дня после перевязки левой передней нисходящей коронарной артерии. Изохроны активации показаны с 20миллисекундным шагом. Цепь циркуляции имеет характерную форму «восьмерки», где два циркулирующих фронта движутся соответственно по и против часовой стрелки вокруг двух зон (дуг) с блоком проведения (толстые сплошные линии). На фрагменте справа некоторые из электрограмм, полученных одновременно вдоль двух дуг функционального блока проведения и на участках прохождения единого фронта циркулирующих волн, показывают присутствие электрической активности между последовательными циркуляторными возбуждениями во время диастолы. Внизу слева — трехмерное схематическое изображение активации желудочков при циркуляторной тахикардии. В данной экспериментальной модели циркуляция возбуждения происходит в тонком слое выжившего эпикарда, покрывающего зону инфаркта. ПЖ — правый желудочек; ЛЖ — левый желудочек.

рованных тканных препаратах, но не в интактном сердце [82—84]. На рис. 7.9 представлена несколько модифицированная версия изохронных карт активации при преждевременном возбуждении, инициирующем циркуляцию с круговым движением (А), а также при первом циркуляторном возбуждении (Б) в миокардиальном препарате предсердия кролика [83]. (Дуги функционального блока обозначены сплошными жирными линиями вместо двойных линий, представленных на оригинальной схеме.) Как видно на карте S2, нанесенный в критический момент времени преждевременный стимул обусловливает появление непрерывной дуги функционального блока проведения. Волны активации огибают оба конца дуги, сталкиваются и затем прорываются в блокированную зону для повторного возбуждения миокарда на проксимальной стороне дуги. На рис. 7.9, Б видно, что циркулирующий волновой фронт Рис. 7.9. Циркуляция возбуждения (модель ведущего цикла). А и Б — изохронные карты активации при нанесении преждевременного стимула (S2) и при первом циркуляторном возбуждении (A1), полученные in vitro на препарате предсердного миокарда кролика [83]. В — схематическое изображение модели ведущего цикла [84]. Г — изохронная карта предсердной активации in vivo при трепетании предсердий собаки; картина активации аналогична наблюдаемой на фрагменте Б. Подробное обсуждение в тексте [89].

продолжает свое движение вокруг одной из двух дуг. В результате происходит разделение первоначальной дуги на два отдельных дугообразных участка. Однако вторая дуга блока значительно смещается, располагаясь в области с наибольшей плотностью изохронов, которая показана на карте S2. Более существенно то, что эта вторая дуга теперь соприкасается с краем препарата, прерывая таким образом циркулирующий по ней волновой фронт. Если бы препарат, показанный на рис. 7.9, Б, находился бы в сердце in situ, то вторая, прерванная волна циркуляции активировалась бы, обусловив движение по замкнутому пути в форме восьмерки. Только в сердце in situ при ситуации, имитирующей активацию in vitro, показанную на рис. 7.9, Б, одна из двух дуг блока будет контактировать с АВсоединением. Подобные примеры действительно наблюдаются в некоторых случаях активации in vivo, зарегистрированной Boineau и соавт. [89] в сердце собаки при трепетании предсердий (см. рис. 7.9, Г). На составленной автором карте единственная циркулирующая волна движется по часовой стрелке вокруг зоны (дуги) с функциональным блоком проведения. Движение второго (способного к циркуляции) волнового фронта в модели замкнутого пути в форме восьмерки предупреждается контактом второй дуги блока с АВсоединением. Таким образом, наличие пути в форме восьмерки представляется основополагающим фактором возникновения возобновляющего циркуляторного возбуждения (короче, фибрилляции) в синцитиальной структуре предсердий и желудочков. Размер замкнутой цепи циркуляции в желудочке весьма невелик — 10 мм; в зависимости от распределения патологических изменений в миокарде такие цепи могут располагаться на эпикардиальных, интрамуральных или субэндокардиальных участках [90]. Таким образом, крупные дуги функционального блока проведения, которые поддерживают большие цепи циркуляции в постинфарктном желудочке собаки, а также описанные Allessie и соавт. [82—84) «мелкие вихри» функционального блока, которые поддерживают небольшие цепи циркуляции возбуждения в предсердном миокарде кролика, могут представлять два края спектра одного и того же электрофизиологического феномена.

Отражение Термин «отражение» первоначально использовался при описании циркуляции возбуждения в линейном пучке проводящей ткани. В качестве достаточного механизма этого явления предлагалась продольная диссоциация проведения в пучке, обусловливающая возникновение микроциркуляторной цепи [91]. Позднее Antzelevitch и соавт, описали другой механизм, способный вызвать отражение [18, 92—94]. Если какойлибо сегмент пучка волокон Пуркинье невозбудим, то проведение импульсов по пучку блокируется именно в этом сегменте (рис. 7.10.Б). Однако блокируемый потенциал действия способен генерировать аксиальный ток, проходящий через невозбудимый сегмент пучка, который функционирует как пассивный кабель. Если невозбудимый сегмент достаточно мал относительно постоянной его длины, то протекающий ток сможет деполяризовать возбудимые волокна дистальнее невозбудимого участка и инициировать потенциал действия (см. рис. 7.10, В). Этот потенциал действия, если он возникает с достаточной задержкой, способен сам вызвать аксиальный ток, ретроградно проходящий через невозбудимый отрезок. Если общее время, необходимое для прохождения через невозбудимый отрезок (туда и обратно) превышает рефрактерный период ткани, расположенной проксимальнее участка блока, то генерируется «отраженный потенциал действия» (см. рис. 7.10,А). Циркуляция возбуждения по механизму отражения возможна в поврежденных тканях сердца. Однако она ограничивается теми областями, где повреждение миокардиальных волокон носит фокальный характер, ибо в случае обширного повреждения электротоническая передача через невозбудимую область невозможна [95].

Рис. 7.10. «Отраженная циркуляция», вызванная прохождением электротонического тока через невозбудимый участок.

Трансмембранные потенциалы зарегистрированы в пучке волокон Пуркинье. Верхние и средние кривые получены в проксимальном (П) и дистальном (Д) сегментах, разделенных невозбудимым участком. Нижняя кривая на каждом фрагменте — маркер стимуляции. А — первый потенциал действия в сегменте П возникает при стимуляции и распространяется вплоть до невозбудимого участка. Возбуждение наблюдается дистальнее невозбудимого участка (сегмент Д) вследствие протекания электротонического тока. Задержка перед дистальным сегментом оказывается достаточно большой, что обеспечивает восстановление возбудимости проксимального сегмента и возникновение отраженного потенциала действия. Б — протекание электротонического тока оказывается недостаточным для активации волокна дистальнее возбудимого участка. В — дистальный сегмент активируется слишком быстро, и отражение не возникает, так как проксимальный сегмент не успевает восстановить свою возбудимость [18].

Электрокардиографические проявления В зависимости от связи между преждевременными возбуждениями желудочков (ПВЖ) и основным ритмом сердца эктопический ритм определяется как экстрасистолический или парасистолический. При экстрасистолическом ритме ПВЖ некоторым образом зависят от основного ритма сердца или связаны с ним и, как правило, имеют фиксированный интервал сцепления с основным возбуждением. Парасистолический ритм обычно бывает независимым от основного сердечного ритма, и парасистолические ПВЖ обнаруживают вариабельные интервалы сцепления с основным возбуждением. Эта классификация предполагает, что экстрасистолический и парасистолический ритмы связаны с различными электрофизиологическими механизмами. Как будет видно из дальнейшего обсуждения, такой подход является, вероятно, слишком упрощенным, что обусловлено прежде всего трудностями в определении электрофизиологических механизмов ПВЖ на основании клинической регистрации последних.





Парасистолический ритм Существуют следующие диагностические критерии [96] парасистолического ритма: 1) значительная вариабельность интервала сцепления эктопических возбуждений при относительно стабильном основном ритме; 2) величины межэктопических интервалов могут быть (по крайней мере) приведены к общему знаменателю;

3) наличие сливных комплексов. Однако использование последнего критерия не считается обязательным при диагностике во всех случаях. Парасистолия с простой интерференцией диагностируется в том случае, если определяются все рассчитанные эктопические импульсы, появляющиеся в конце рефрактерного периода сердца. Частота возбуждения парасистолического фокуса с простой интерференцией обычно ниже частоты основного сердечного ритма (рис. 7.11). Парасистолия с блоком выхода подозревается в том случае, когда ожидаемая эктопическая разрядка не появляется даже за пределами рефрактерного периода сердца. Частота возбуждения парасистолического фокуса с блоком выхода нередко превышает частоту основного ритма сердца (рис. 7.12).

Для инициации парасистолического ритма автоматическому пейсмекеру необходим блок входа. Для объяснения «протекции» автоматического парасистолического фокуса в последние годы было предложено несколько различных механизмов. Kaufmann и Rothberger допускают наличие зоны протективного блока по всему периметру центра фокуса [97]. Vedoya постулирует существование двух сферических зон блока, окружающих центр и характеризующихся разной длительностью рефрактерного периода [98]. Scherf считает, что протекция может быть обусловлена недостаточной возбудимостью автоматического центра относительно потенциала синусового импульса [99]. Он также полагает, что автоматический фокус обладает более высокой собственной частотой разрядки, что делает его рефрактерным к приходящей извне волне возбуждения и препятствует его активации доминирующим водителем ритма [100, 101]. Наличие медленной диастолической деполяризации пейсмекерных клеток также предлагается в качестве одного из наиболее приемлемых объяснений как блока входа, так и блока выхода для парасистолического фокуса [102].

Первоначальное предположение Kaufmann и Rothberger о том, что парасистолический пейсмекер полностью независим и защищен от влияния основного сердечного ритма, в настоящее время отвергается. Любой водитель ритма, связанный с окружающей тканью проводящим путем (блок входа, но свободный выход), в некоторой степени испытывает электротоническое влияние активности окружающих тканей [103]. Влияние электротонической деполяризации на спонтанную активность автоматического водителя ритма можно определить с помощью кривой фаза — ответ [25, 104]. Подпороговая деполяризация на ранней фазе пейсмекерного цикла обусловливает задержку следующей спонтанной разрядки. Поздняя деполяризация ускоряет или даже перезапускает пейс Рис. 7.11. Непрерывная ритмограмма, показывающая замедленный парасистолический желудочковый ритм (23 уд/мин) с простой интерференцией при основном синусовом ритме.

Звездочками отмечены ожидаемые парасистолические разряды. Проявляются лишь те эктопические импульсы, которые возникают за пределами рефрактерного периода. F — сливной комплекс.

Рис. 7.12. Учащенный желудочковый парасистолический ритм (125 уд/мин), показывающий блок выхода.

Отмечается отсутствие некоторых ожидаемых эктопических возбуждений, хотя они и попадают за пределы рефрактерного периода. Если бы анализировались только три последних парасистолических возбуждения, то частота парасистолического ритма была бы ошибочно оценена как равная одной трети действительной величины. С другой стороны, продолжение последовательного эктопического возбуждения, как показано в первой половине записи, приведет к развитию парасистолической тахикардии. Доминирующим сердечным ритмом является предсердная тахиаритмия с вариабельным АВблоком. Fсливной комплекс, а — дефлексии предсердий.

Рис. 7.13. Эктопический фокус, проявляющий в одно время парасистолическую активность, а в другое — систолическую.

Pages:     | 1 |   ...   | 9 | 10 || 12 | 13 |   ...   | 31 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.