WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


Pages:     | 1 |   ...   | 25 | 26 || 28 | 29 |   ...   | 31 |
Однако подобные электрограммы могут быть получены в области, где миокардиальные волокна разделены соединительной тканью даже в отсутствие циркуляции возбуждения. Richards и соавт. [22] удалось показать, что поддерживающаяся циркуляция может возникать на очень небольших (объемом 5 см3) участках эпикарда, где регистрируется фрагментарная активность.

Рис. 11.2. Нарушение проведения в зоне экспериментального инфаркта, которое вызывает циркуляцию возбуждения.

Ниже представлены стандартная ЭКГ и регистрация активности в зоне ишемии (ЗИ) с помощью композитного электрода (Комп) и трех биполярных электродов (Бип 1, Бип 2 и Бип 3), расположенных недалеко друг от друга. На фрагменте Б композитный электрод (точечная линия) не покрывает всего пути циркуляции, поэтому последовательность регистрируемой им активности в ишемической зоне (Комп) в виде многочисленных асинхронных пиков не является непрерывной [1].

Четкая корреляция между наличием непрерывной фрагментарной электрической активности и стабильностью желудочковой тахикардии была продемонстрирована Garan и соавт. [23]. Эти исследования показали, что электрическая стимуляция, которая возбуждает желудочки, не влияя на непрерывную электрическую активность, не способна прекратить желудочковую тахикардию. Однако трансформация непрерывной активности в прерывистую, судя по дискретным ЭГ, полученным при быстрой стимуляции, прекращает желудочковую тахикардию. Приостановка непрерывной электрической активности однократным электрическим стимулом без возбуждения всей массы желудочков во время желудочковой тахикардии способно устранить тахикардию. Хирургическое удаление участка, где поддерживается непрерывная электрическая активность, исключает возможность инициации желудочковой та хикардии. Это подтверждается и наблюдениями за больными с желудочковой тахикардией, у которых склонность к данному нарушению ритма была успешно устранена в результате хирургического вмешательства [24, 25]. Проведенные исследования ясно показывают патогенетическое значение участков с непрерывной активностью для развития желудочковой тахикардии.

Высказывалось также предположение о том, что фрагментарная активность, регистрируется в клинических исследованиях с помощью внутриполостных катетерных электродов [10, 11, 26], может быть всего лишь артефактом метода регистрации вследствие движения катетерного электрода относительно ткани или искажения электрограмм изза частотных характеристик усилителей [27]. Однако такие электрограммы с фрагментарной активностью могут быть получены и с помощью униполярных или биполярных электродов на изолированных перфузируемых препаратах, механическое движение которых пренебрежимо мало. Поскольку такие электроды обеспечивают непрерывный и высококачественный контакт с тканью, очевидно, что получаемые электрограммы с фрагментарной активностью не являются артефактными.

Методологические аспекты неинвазивной регистрации поздних желудочковых потенциалов Амплитуда поздних желудочковых потенциалов составляет единицы милливольт даже при прямой регистрации биполярными электродами на поверхности миокарда. При обычной электрокардиографии такие сигналы редко регистрируются на поверхности тела [28]. Однако их все же можно записать с поверхности тела при высоком усилении электрокардиографического сигнала и использовании методов компьютерного усреднения, как это было впервые показано Berbari и соавт. [12] в эксперименте на животных, а также Fontaine и соавт. [7] — у больных с идиопатической желудочковой тахикардией. Это подтверждается множеством последующих работ [13—19, 29, 30].

Основная проблема при большом усилении сигнала состоит в повышении уровня шума, генерируемого несколькими источниками (табл. 11.1), что вынуждает использовать различные методы подавления шума. Амплитуда полезного сигнала в таких случаях часто меньше электрического шума того или иного источника. Кроме тщательного экранирования кабеля и использования почти бесшумных входных предусилителей, для устранения оставшегося случайного шума применяется также усреднение сигнала. С возрастанием числа усредняемых записей амплитуда шума, накладывающегося случайным образом на каждую запись, снижается, тогда как амплитуда повторяющегося истинного сигнала стабилизируется, увеличивая таким образом отношение сигнал — шум (рис. 11.3). В разработанной нами системе для получения стабильного сигнала достаточно получить от 100 до 200 повторений.

Таблица 11.1. Причины шумов при ЭКГрегистрации с высоким усилением Шумы окружающей среды Шум, генерируемый на границе между кожей и электродом Миотический шум Шум усилителя Этот метод применим только для повторяющихся электрокардиографических сигналов и не способен выявлять динамические изменения сигнала в последовательных регистрациях.

Частота оцифровки сигнала в системе накопления и усреднения записей определяется частотной составляющей этого сигнала. Для получения хорошего качества частотные характеристики прибора должны соответствовать частотной составляющей сигнала. В идеале входной сигнал, включая шум, не должен иметь составляющих с частотой выше частоты оцифровки. Частотные компоненты входного сигнала с частотой, превышающей половину частоты оцифровки, вызывают смещение частотных составляющих, располагающихся в спектре ниже половины частоты оцифровки, на столько же герц, насколько эти составляющие в исходном сигнале превышают данный предел. В нашей системе смещенные частотные компоненты не создают никаких проблем, так как входной сигнал фильтруется аналоговым фильтром с частотой пропускания до 300 Гц и оцифровывается с частотой 10 кГц [14].

Одной из проблем высокого усиления биологических сигналов является «звон» фильтра, особенно при использовании фильтров с мощными характеристиками [31]. Такое явление может возникнуть при быстром спаде высокоамплитудного сигнала к нулевой линии. Обычные методы фильтрации значительно усиленного комплекса QRS искажают окончание сигнала. Интенсивность звона фильтра увеличивается при повышении нижней частоты пропускания. Однако устранение низкочастотных компонентов сигнала является необходимым условием для предотвращения насыщения усилителя во время сегмента ST при исключительно высоком усилении, используемом для детектирования поздних потенциалов, а также для исключения дыхательных колебаний. Таким образом, во всех работах, посвященных изучению поздних потенциалов, необходимо указывать характеристики фильтра. Было показано, что в некоторых схемах фильтров после окончания комплекса QRS довольно продолжительное время отмечаются многократные колебания сигнала (звон) [18]. В нашей системе, в которой используется однополюсный фильтр (6 дБ на 1 октаву), возможны только кратковременные колебания в течение нескольких миллисекунд после резкого окончания прямоугольного сигнала (рис. 11.4). Разумеется, это тоже может мешать выявлению коротких низкоамплитудных сигналов непосредственно после окончания комплекса QRS. Однако такой звон не оказывает существенного влияния на сигналы, появляющиеся более чем через 20 мс после резкого окончания QRS. Simson и соавт. [18] предложили иное решение, основанное на использовании двусторонних фильтров, обрабатывающих комплекс QRS в обратном направлении во времени после их компьютерной регистрации. Таким способом удается детектировать низкоамплитудные сигналы в терминальной части комплекса QRS без какоголибо влияния звона фильтра после окончания высокоамплитудного сигнала комплекса QRS, предшествующего поздним потенциалам.

Рис. 11.3. Постепенное улучшение качества конечного сигнала по мере увеличения числа усредненных циклов в диапазоне от 1 до 1000 у больного с аневризмой левого желудочка и желудочковой тахикардией. Наблюдаемая высокочастотная активность представляет собой поздний потенциал, возникающий вскоре после комплекса QRS.

Одно из требований метода усреднения сигнала — идентичность усредненных желудочковых комплексов. Следовательно, необходимо исключить преждевременные возбуждения. Этого можно добиться либо путем простого исключения всех возбуждений с заданной степенью преждевременности [14], либо более специфично — посредством пропускания всех ЭКГсигналов через программу распознавания символов для устранения эктопических возбуждений и слишком зашумленных сигналов [18]. При последнем подходе первые 8 возбуждений принимаются как эталон, если среднее стандартное отклонение сигнала в этой группе меньше 20 мкВ. Все последующие возбуждения сравниваются с эталоном и принимаются, если отклонение меньше двукратного стандартного отклонения, использованного при создании эталона. Эталон обновляется через каждые 4 возбуждения.

Другим условием применения метода усреднения сигнала является стабильный запуск отсчета сигнала при оцифровке компьютером. В случае значительных колебаний точки отсчета большая часть высокочастотного сигнала утрачивается, действуя, таким образом, как высокочастотный фильтр.

Оборудование для неинвазивной регистрации поздних потенциалов В настоящее время существует два основных метода неинвазивной регистрации поздних желудочковых потенциалов. Первый состоит в усреднении сигнала во времени; при этом усредняется большое число идентичных сердечных циклов, регистрируемых одним биполярным электродом в течение длительного времени [12—19]. Вторым является метод пространственного усреднения, при котором пытаются уменьшить амплитуду шума однократного возбуждения посредством одновременной регистрации активности множеством близкорасположенных электродов, предполагая, что они регистрируют практически идентичный комплекс QRS, тогда как шум при каждом входе распределяется случайным образом [32, 33].

Рис. 11.4. Влияние пограничной частоты фильтра (однополюсные RCфильтры, 6 дБ/октава) на форму сигнала.

Прямоугольный сигнал (показана лишь его конечная часть) подавался на предусилитель и усреднитель с использованием фильтров; нижняя граница частоты изменялась от 0,3 до 100 Гц. Верхняя граница составляла 300 Гц. Повышение нижней границы частоты приводило к выраженному угнетению горизонтального участка сигнала непосредственно после ступеньки, что делало невозможной идентификацию сигналов в течение этого короткого периода (приблизительно 10 мс).

Основное оборудование для усреднения сигнала во времени включает предусилитель, аналогоцифровой преобразователь (АЦП), усреднитель. сигнала и устройство для представления и хранения данных (рис. 11.5). Кроме того, предусматривается подача триггерного сигнала либо от того же ЭКГисточника, либо от другого отведения. Триггерный сигнал используется для запуска процесса усреднения с заданной точки каждого комплекса QRS. Для возможности регистрации части сигналов ЭКГ до момента подачи триггерного сигнала необходимо специальное устройство для временного хранения данных. Как отмечалось ранее, аномальные сигналы QRS должны исключаться из процесса усреднения.

Рис. 11.5. Блоксхема установки, используемой нами для регистрации поздних желудочковых потенциалов.

Основные технические различия применяемых в настоящее время систем состоят в использовании разных положений регистрирующего электрода, различных характеристик фильтра, а также разных систем представления, хранения и оценки данных. Ниже приведено описание некоторых систем.

Pages:     | 1 |   ...   | 25 | 26 || 28 | 29 |   ...   | 31 |










© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.